Strange IndiaStrange India


  • Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 598, 304–307 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dresp, S., Dionigi, F., Klingenhof, M. & Strasser, P. Direct electrolytic splitting of seawater-opportunities and challenges. ACS Energy Lett. 4, 933–942 (2019).

    Article 
    CAS 

    Google Scholar 

  • Jin, H., Wang, X., Tang, C., Vasileff, A. & Qiao, S. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 33, 2007508 (2021).

    Article 
    CAS 

    Google Scholar 

  • Karunadasa, H. I. et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shi, L. et al. Using reverse osmosis membranes to control ion transport during water electrolysis. Energy Environ. Sci. 13, 3138–3148 (2020).

    Article 
    CAS 

    Google Scholar 

  • Veroneau, S. S. & Nocera, D. G. Continuous electrochemical water splitting from natural water sources via forward osmosis. Proc. Natl Acad. Sci. USA 118, e2024855118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Veroneau, S. S., Hartnett, A. C., Thorarinsdottir, A. E. & Nocera, D. G. Direct seawater splitting by forward osmosis coupled to water electrolysis. ACS Appl. Energy Mater. 5, 1403–1408 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kuang, Y. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl Acad. Sci. USA 116, 201900556 (2019).

    Article 

    Google Scholar 

  • Sun, F., Qin, J. & Wang, Z. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 12, 4182 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dresp, S., Thanh, T. N., Klingenhof, M., Brueckner, S. & Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 13, 1725–1729 (2020).

    Article 
    CAS 

    Google Scholar 

  • Yu, L., Zhu, Q., Song, S., Mcelhenny, B. & Ren, Z. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 10, 5106 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miao, J., Xiao, F. X., Yang, H. B., Khoo, S. Y. & Liu, B. Hierarchical Ni–Mo–S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci. Adv. 1, 1500259 (2015).

    Article 

    Google Scholar 

  • Dinh, C. T. et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 4, 107–114 (2019).

    Article 
    CAS 

    Google Scholar 

  • Tong, W. et al. Electrolysis of low-grade and saline surface water. Nat. Energy 5, 367–377 (2020).

    Article 

    Google Scholar 

  • Loutatidou, et al. Capital cost estimation of RO plants: GCC countries versus southern Europe. Desalination 347, 103–111 (2014).

    Article 
    CAS 

    Google Scholar 

  • Caldera, U. & Breyer, C. Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present and future. Water Resour. Res. 53, 10523–10538 (2017).

    Article 

    Google Scholar 

  • Choudhury, M. R., Anwar, N., Jassby, D. & Rahaman, M. S. Fouling and wetting in the membrane distillation driven wastewater reclamation process—a review. Adv. Colloid Interface Sci. 269, 370–399 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ahmad, N. A., Goh, P. S., Yogarathinam, L. T., Zulhairun, A. K. & Ismail, A. F. Current advances in membrane technologies for produced water desalination. Desalination 493, 114643 (2020).

    Article 
    CAS 

    Google Scholar 

  • Generous, M. M., Qasem, N., Akbar, U. A. & Zubair, S. M. Techno-economic assessment of electrodialysis and reverse osmosis desalination plants. Sep. Purif. Technol. 272, 118875 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, M. et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain. 5, 518–526 (2022).

  • Jones, E., Qadir, M., van Vliet, M. T., Smakhtin, V. & Kang, S.-M. The state of desalination and brine production: a global outlook. Sci. Total. Environ. 657, 1343–1356 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ursua, A., Gandia, L. M. & Sanchis, P. Hydrogen production from water electrolysis: current status and future trends. Proc. IEEE 100, 410–426 (2012).

    Article 
    CAS 

    Google Scholar 

  • Yin, Y., Jeong, N. & Tong, T. The effects of membrane surface wettability on pore wetting and scaling reversibility associated with mineral scaling in membrane distillation. J. Membr. Sci. 614, 118503 (2020).

    Article 
    CAS 

    Google Scholar 

  • Qiu, H. et al. Functional polymer materials for modern marine biofouling control. Prog. Polym. Sci. 127, 101516 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yang, K. et al. A roadmap to sorption-based atmospheric water harvesting: from molecular sorption mechanism to sorbent design and system optimization. Environ. Sci. Technol. 55, 6542–6560 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tereshchenko, & Anatoly, G. Deliquescence: hygroscopicity of water‐soluble crystalline solids. J. Pharm. Sci. 104, 3639–3652 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lan, C., Xie, H., Wu, Y., Chen, B. & Liu, T. Nanoengineered, Mo-doped, Ni3S2 electrocatalyst with increased Ni–S coordination for oxygen evolution in alkaline seawater. Energy Fuels 36, 2910–2917 (2022).

    Article 
    CAS 

    Google Scholar 

  • Hausmann, J. N., Schlögl, R., Menezes, P. & Driess, M. Is direct seawater splitting economically meaningful? Energy Environ. Sci. 14, 3679–3685 (2021).

    Article 
    CAS 

    Google Scholar 

  • Qtaishat, M., Matsuura, T., Kruczek, B. & Khayet, M. Heat and mass transfer analysis in direct contact membrane distillation. Desalination 219, 272–292 (2008).

    Article 
    CAS 

    Google Scholar 

  • Matsuura, T. Synthetic Membranes and Membrane Separation Processes (CRC, 2020).

  • Iversen, S. B., Bhatia, V. K., Dam-Johansen, K. & Jonsson, G. Characterization of microporous membranes for use in membrane contactors. J. Membr. Sci. 130, 205–217 (1997).

    Article 
    CAS 

    Google Scholar 

  • Khalifa, A., Ahmad, H., Antar, M., Laoui, T. & Khayet, M. Experimental and theoretical investigations on water desalination using direct contact membrane distillation. Desalination 404, 22–34 (2017).

    Article 
    CAS 

    Google Scholar 

  • Phattaranawik, J., Jiraratananon, R. & Fane, A. G. Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation. J. Membr. Sci. 215, 75–85 (2003).

    Article 
    CAS 

    Google Scholar 

  • Khayet, M., Velázquez, A. & Mengual, J. I. Modelling mass transport through a porous partition: effect of pore size distribution. J. Non Equilibrium Thermodyn. 29, 279–299 (2004).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Lawson, K. W. & Lloyd, D. R. Membrane distillation. J. Membr. Sci. 124, 1–25 (1997).

    Article 
    CAS 

    Google Scholar 

  • Balej, J. Water vapour partial pressures and water activities in potassium and sodium hydroxide solutions over wide concentration and temperature ranges. Int. J. Hydrogen Energy 10, 233–243 (1985).

    Article 
    CAS 

    Google Scholar 

  • Chu, P. C., Fan, C. & Liu, W. T. Determination of vertical thermal structure from sea surface temperature. J. Atmos. Ocean. Technol. 17, 971–979 (2000).

    2.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0426%282000%29017%3C0971%3ADOVTSF%3E2.0.CO%3B2″ aria-label=”Article reference 37″ data-doi=”10.1175/1520-0426(2000)017<0971:DOVTSF>2.0.CO;2″>Article 

    Google Scholar 

  • Levitus, S. & Boyer, T. P. World Ocean Atlas 1994. Volume 4. Temperature (National Environmental Satellite, Data, and Information Service, 1994).

  • Straub, A. P., Yip, N. Y., Lin, S., Lee, J. & Elimelech, M. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes. Nat. Energy 1, 16090 (2016).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *