Strange India All Strange Things About India and world


  • 1.

    Vanderburg, A. et al. A disintegrating minor planet transiting a white dwarf. Nature 526, 546–549 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Manser, C. J. et al. A planetesimal orbiting within the debris disc around a white dwarf star. Science 364, 66–69 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Villaver, E. & Livio, M. Can planets survive stellar evolution? Astrophys. J. 661, 1192–1201 (2007).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Duncan, M. J. & Lissauer, J. J. The effects of post-main-sequence solar mass loss on the stability of our planetary system. Icarus 134, 303–310 (1998).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Sigurdsson, S. et al. A young white dwarf companion to pulsar B1620-26: evidence for early planet formation. Science 301, 193–196 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Vanderburg, A. et al. A giant planet candidate transiting a white dwarf. Nature 585, 363–367 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Luhman, K. L., Burgasser, A. J. & Bochanski, J. J. Discovery of a candidate for the coolest known brown dwarf. Astrophys. J. Lett. 730, L9 (2011).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Gaensicke, B. T. et al. Accretion of a giant planet onto a white dwarf. Nature 576, 61–64 (2019).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Madappatt, N., De Marco, O. & Villaver, E. The effect of tides on the population of PN from interacting binaries. Mon. Not. R. Astron. Soc. 463, 1040–1056 (2016).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Mustill, A. J. et al. Unstable low-mass planetary systems as drivers of white dwarf pollution. Mon. Not. R. Astron. Soc. 476, 3939–3955 (2018).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Nordhaus, J. & Spiegel, D. S. On the orbits of low-mass companions to white dwarfs and the fates of the known exoplanets. Mon. Not. R. Astron. Soc. 432, 500–505 (2013).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Bachelet, E. et al. MOA 2010-blg-477lb: constraining the mass of a microlensing planet from microlensing parallax, orbital motion, and detection of blended light. Astrophys. J. 754, 73 (2012).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Schreiber, M. R. et al. Cold giant planets evaporated by hot white dwarfs. Astrophys. J. Lett. 887, L4 (2019).

  • 14.

    Bennett, D. P. & Rhie, S. H. Detecting Earth-mass planets with gravitational microlensing. Astrophys. J. 472, 660–664 (1996).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Boyajian, T. S. et al. Stellar diameters and temperatures. III. Main sequence A, F, G, and K stars: additional high-precision measurements and empirical relations. Astrophys. J. 771, 40 (2014); erratum 787, 92 (2014).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Gaudi, B. S. Microlensing surveys for exoplanets. Annu. Rev. Astron. Astr. 50, 411–453 (2012).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Bennett, D. P. et al. MOA-2011-BLG-262Lb: a sub-Earth-mass moon orbiting a gas giant primary or a high velocity planetary system in the galactic bulge. Astrophys. J. 785, 155 (2014).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Giammichele, N., Bergeron, P. & Dufour, P. Know your neighborhood: a detailed model atmosphere analysis of nearby white dwarfs. Astrophys. J. Suppl. S. 199, 29 (2012).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Toonen, S., Hollands, M., Gänsicke, B. T. & Boekholt, T. The binarity of the local white dwarf population. Astron. Astrophys. 602, 16 (2017).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Tremblay, P. E. et al. The field white dwarf mass distribution. Mon. Not. R. Astron. Soc. 461, 2100–2114 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Veras, D. Post-main-sequence planetary system evolution. R. Soc. Open Sci. 3, 150571 (2016).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 22.

    Mustill, A. J. & Villaver, E. Foretellings of Ragnarök: world-engulfing asymptotic giants and the inheritance of white dwarfs. Astrophys. J. 761, 121 (2012).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Ghezzi, L., Montet, B. T. & Johnson, J. A. Retired A stars revisited: an updated giant planet occurrence rate as a function of stellar metallicity and mass. Astrophys. J. 860, 109 (2018).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Vandorou, A. et al. Revisiting MOA 2013-BLG-220L: a solar-type star with a cold super-Jupiter companion. Astron. J. 160, 121 (2020).

    ADS 
    Article 

    Google Scholar 

  • 25.

    OGLE Extinction Calculator. http://ogle.astrouw.edu.pl/cgi-ogle/getext.py (2013).

  • 26.

    Nataf, D. M. et al. Reddening and extinction toward the galactic bulge from OGLE-III: the Inner Milky Way’s RV ~ 2.5 extinction curve. Astrophys. J. 769, 88 (2013).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Blackman, J. W. et al. Confirmation of the stellar binary microlensing event, Macho 97-BLG-28. Astrophys. J. 890, 87 (2020).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Beaulieu, J.-P. et al. Revisiting the microlensing event Ogle 2012-Blg-0026: a solar mass star with two cold giant planets. Astrophys. J. 824, 83 (2016).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Bertin, E. SWarp: resampling and co-adding FITS images together. Astrophysics Source Code Library record no. ascl:1010.068 (2010).

  • 30.

    Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Sup. 117, 393–404 (1996).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Minniti, D. et al. VISTA Variables in the Via Lactea (VVV): the public ESO near-IR variability survey of the Milky Way. New Astron. 15, 433–443 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Bennett, D. P. et al. Planetary and other short binary microlensing events from the MOA short-event analysis. Astrophys. J. 757, 119 (2012).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Bond, I. A. et al. The lowest mass ratio planetary microlens: OGLE 2016–BLG–1195Lb. Mon. Not. R. Astron. Soc. 469, 2434–2440 (2017).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Bhattacharya, A. et al. WFIRST exoplanet mass-measurement method finds a planetary mass of 39 ± 8 M for OGLE-2012-BLG-0950Lb. Astronom. J. 156, 289 (2018).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Bennett, D. P. et al. Keck observations confirm a super-Jupiter planet orbiting M dwarf OGLE-2005-BLG-071L. Astronom. J. 159, 68 (2020).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Gaudi, B. S. et al. Discovery of a Jupiter/Saturn analog with gravitational microlensing. Science 319, 927–930 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Bennett, D. P. et al. Masses and orbital constraints for the OGLE-2006-BLG-109Lb,c Jupiter/Saturn analog planetary system. Astrophys. J. 713, 837–855 (2010).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Gould, A. et al. A terrestrial planet in a ~1-au orbit around one member of a ~15-au binary. Science 345, 46–49 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Bennett, D. P. et al. The first circumbinary planet found by microlensing: OGLE-2007-BLG-349L(AB)c. Astronom. J. 152, 125 (2016).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Zhu, W. et al. Empirical study of simulated two-planet microlensing events. Astrophys. J. 794, 53 (2014).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Dong, S. et al. First space-based microlens parallax measurement: Spitzer observations of OGLE-2005-SMC-001. Astrophys. J. 664, 862–878 (2007).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. Numerical Recipes (Cambridge Univ. Press, 1992).



  • Source link

    Leave a Reply

    Your email address will not be published.