Rivera-Thorsen, T. E. et al. The Sunburst Arc: direct Lyman α escape observed in the brightest known lensed galaxy. Astron. Astrophys. 608, L4 (2017).
Google Scholar
Johnson, T. L. et al. Star formation at z = 2.481 in the lensed galaxy SDSS J1110+6459: star formation down to 30 pm scales. Astrophys. J. Lett. 843, L21 (2017).
Google Scholar
Kelly, P. L. et al. Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens. Nat. Astron. 2, 334–342 (2018).
Google Scholar
Rodney, S. A. et al. Two peculiar fast transients in a strongly lensed host galaxy. Nat. Astron. 2, 324–333 (2018).
Google Scholar
Chen, W. et al. Searching for highly magnified stars at cosmological distances: discovery of a redshift 0.94 supergiant in archival images of the galaxy cluster MACS J0416.1-2403. Astrophys. J. 881, 8 (2019).
Google Scholar
Kaurov, A. A., Dai, L., Venumadhav, T., Miralda-Escudé, J. & Frye, B. Highly magnified stars in lensing clusters: new evidence in a galaxy lensed by MACS J0416.1-2403. Astrophys. J. 881, 58 (2019).
Coe, D. et al. RELICS: Reionization Lensing Cluster Survey. Astrophys. J. 884, 85 (2019).
Google Scholar
Salmon, B. et al. RELICS: The Reionization Lensing Cluster Survey and the brightest high-z galaxies. Astrophys. J. 889, 189 (2020).
Google Scholar
Rivera-Thorsen, T. E. et al. Gravitational lensing reveals ionizing ultraviolet photons escaping from a distant galaxy. Science 366, 738–741 (2019).
Google Scholar
Zitrin, A. et al. Hubble Space Telescope combined strong and weak lensing analysis of the CLASH sample: mass and magnification models and systematic uncertainties. Astrophys. J. 801, 44 (2015).
Google Scholar
Zitrin, A. et al. New multiply-lensed galaxies identified in ACS/NIC3 observations of Cl0024+1654 using an improved mass model. Mon. Not. R. Astron. Soc. 395, 1319–1332 (2009).
Broadhurst, T. et al. Strong-lensing analysis of A1689 from Deep Advanced Camera images. Astrophys. J. 621, 53–88 (2005).
Google Scholar
Jullo, E. & Kneib, J. P. Multiscale cluster lens mass mapping – I. Strong lensing modelling. Mon. Not. R. Astron. Soc. 395, 1319–1332 (2009).
Google Scholar
Jullo, E. et al. A Bayesian approach to strong lensing modelling of galaxy clusters. New J. Phys. 9, 447 (2007).
Google Scholar
Oguri, M. The mass distribution of SDSS J1004+4112 revisited. Publ. Astron. Soc. Jpn 62, 1017–1024 (2010).
Google Scholar
Diego, J. M., Tegmark, M., Protopapas, P. & Sandvik, H. B. Combined reconstruction of weak and strong lensing data with WSLAP. Mon. Mot. R. Astron. Soc. 375, 958–970 (2007).
Google Scholar
Diego, J. M., Protopapas, P., Sandvik, H. B. & Tegmark, M. Non-parametric inversion of strong lensing systems. Mon. Not. R. Astron. Soc. 360, 477–491 (2005).
Google Scholar
Diego, J. M. The Universe at extreme magnification. Astron. Astrophys. 625, A84 (2019).
Google Scholar
Meneghetti, M. et al. The Frontier Fields lens modelling comparison project. Mon. Mot. R. Astron. Soc. 472, 3177–3216 (2017).
Google Scholar
Venumadhav, T., Dai, L. & Miralda-Escudé, J. Microlensing of extremely magnified stars near caustics of galaxy clusters. Astrophys. J. 850, 49 (2017).
Google Scholar
Diego, J. M. et al. Dark matter under the microscope: constraining compact dark matter with caustic crossing events. Astrophys. J. 857, 25 (2018).
Google Scholar
Dai, L. Statistical microlensing towards magnified high-redshift star clusters. Mon. Mot. R. Astron. Soc. 501, 5538–5553 (2021).
Google Scholar
Portegies Zwart, S. F., McMillan, S. L. W. & Gieles, M. Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010).
Google Scholar
Figer, D. F., McLean, I. S. & Morris, M. Massive stars in the quintuplet cluster. Astrophys. J. 514, 202–220 (1999).
Google Scholar
Bouwens, R. J. et al. Very low-luminosity galaxies in the early universe have observed sizes similar to single star cluster complexes. Preprint at https://arxiv.org/abs/1711.02090 (2017).
Vanzella, E. et al. Massive star cluster formation under the microscope at z = 6. Mon. Not. R. Astron. Soc. 483, 3618–3635 (2019).
Google Scholar
Behrendt, M., Schartmann, M. & Burkert, A. The possible hierarchical scales of observed clumps in high-redshift disc galaxies. Mon. Not. R. Astron. Soc. 488, 306–323 (2019).
Google Scholar
Sana, H. et al. Binary interaction dominates the evolution of massive stars. Science 337, 444–446 (2012).
Google Scholar
Sana, H. et al. Southern massive stars at high angular resolution: observational campaign and companion detection. Astrophys. J. Suppl. Ser. 215, 15 (2014).
Google Scholar
Moe, M. & Di Stefano, R. Mind your Ps and Qs: the interrelation between period (P) and mass-ratio (Q) distributions of binary stars. Astrophys. J. Suppl. Ser. 230, 15 (2017).
Google Scholar
Szécsi, D., Agrawal, P., Wünsch, R. & Langer, N. Bonn Optimized Stellar Tracks (BoOST). Simulated populations of massive and very massive stars for astrophysical applications. Astron. Astrophys. 628, A125 (2022).
Shimizu, I., Inoue, A. K., Okamoto, T. & Yoshida, N. Nebular line emission from z > 7 galaxies in a cosmological simulation: rest-frame UV to optical lines. Mon. Not. R. Astron. Soc. 461, 3563–3575 (2016).
Google Scholar
Wen, Z. L., Han, J. L. & Liu, F. S. A catalog of 132,684 clusters of galaxies identified from Sloan Digital Sky Survey III. Astrophys. J. Suppl. Ser. 199, 34 (2012).
Google Scholar
Wen, Z. L. & Han, J. L. Calibration of the optical mass proxy for clusters of galaxies and an update of the WHL12 cluster catalog. Astrophys. J. 807, 178 (2015).
Google Scholar
Alam, S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III. Astropys. J. Suppl. Ser. 219, 12 (2015).
Google Scholar
Planck Collaboration. Planck 2015 results: XXVII. The second Planck catalogue of Sunyaev–Zeldovich sources. Astron. Astrophys. 594, A27 (2016).
Sunyaev, R. A. & Zeldovich, Y. B. Small-scale fluctuations of relic radiation. Astrophys. Space Sci. 7, 3–19 (1970).
Google Scholar
Strait, V. et al. RELICS: properties of z ≥ 5.5 galaxies inferred from Spitzer and Hubble imaging, including a candidate z ~ 6.8 strong [O iii] emitter. Astrophys. J. 910, 135 (2021).
Google Scholar
Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996).
Google Scholar
Beintez, N. Bayesian photometric redshift estimation. Astrophys. J. 536, 571–583 (2000).
Google Scholar
Coe, D. et al. Galaxies in the Hubble Ultra Deep Field. I. Detection, multiband photometry, photometric redshifts, and morphology. Astron. J. 132, 926–959 (2006).
Google Scholar
Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).
Google Scholar
Eldridge, J. J. et al. Binary Population and Spectral Synthesis version 2.1: construction, observational verification, and new results. Publ. Astron. Soc. Aust. 34, e058 (2017).
Google Scholar
Ferland, G. J. et al. The 2017 release of Cloudy. Rev. Mex. Astron. Astr. 53, 385–438 (2017).
Google Scholar
Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161–167 (1955).
Google Scholar
Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).
Google Scholar
Ellis, R. S. et al. The homogeneity of spheroidal populations in distant clusters. Astrophys. J. 483, 582–596 (1997).
Google Scholar
Stanford, S. A., Eisenhardt, P. R. & Dickinson, M. The evolution of early-type galaxies in distant clusters. Astrophys. J. 492, 461–479 (1998).
Google Scholar
Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970).
Google Scholar
Limousin, M., Kneib, J.-P. & Natarajan, P. Constraining the mass distribution of galaxies using galaxy–galaxy lensing in clusters and in the field. Mon. Not. R. Astron. Soc. 356, 309–322 (2005).
Google Scholar
Eliasdóttir, Á. et al. Where is the matter in the Merging Cluster Abell 2218? Preprint at https://arxiv.org/abs/0710.5636 (2007).
Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996).
Google Scholar
Johnson, T. L. et al. Star formation at z = 2.481 in the lensed galaxy SDSS J1110+6459. I. Lens modeling and source reconstruction. Astrophys. J. 843, 78 (2017).
Google Scholar
Dai, L. & Pascale, M. New approximation of magnification statistics for random microlensing of magnified sources. Preprint at https://arxiv.org/abs/2104.12009 (2021).
Jiménez-Teja, Y. et al. RELICS: ICL analysis of the z = 0.566 merging cluster WHL J013719.8–08284. Astrophys. J. 922, 268 (2021).
Google Scholar
Kriek, M. et al. An ultra-deep near-infrared spectrum of a compact quiescent galaxy at z = 2.2. Astrophys. J. 700, 221–231 (2009).
Google Scholar
Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).
Google Scholar
Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003).
Google Scholar
Spera, M., Mapelli, M. & Bressan, A. The mass spectrum of compact remnants from the PARSEC stellar evolution tracks. Mon. Not. R. Astron. Soc. 451, 4086–4103 (2015).
Oguri, M., Diego, J. M., Kaiser, N., Kelly, P. L. & Broadhurst, T. Understanding caustic crossings in giant arcs: characteristic scales, event rates, and constraints on compact dark matter. Phys. Rev. D 97, 023518 (2018).
Google Scholar
Windhorst, R. A. et al. On the observability of individual population III stars and their stellar-mass black hole accretion disks through cluster caustic transits. Astrophys. J. Suppl. Ser. 234, 41 (2018).
Google Scholar
Lejeune, T. H., Cuisinier, F. & Buser, R. Standard stellar library for evolutionary synthesis. I. Calibration of theoretical spectra. Astron. Astrophys. Suppl. Ser. 125, 229–246 (1997).
Google Scholar
Calzetti, D. et al. The brightest young star clusters in NGC 5253. Astrophys. J. 811, 75 (2015).
Google Scholar
Sanyal, D., Grassitelli, L., Langer, N. & Bestenlehner, J. M. Massive main-sequence stars evolving at the Eddington limit. Astron. Astrophys. 580, A20 (2015).
Google Scholar
El-Badry, K., Rix, H.-W., Tian, H., Duchêne, G. & Moe, M. Discovery of an equal-mass ‘twin’ binary population reaching 1000+ au separations. Mon. Not. R. Astron. Soc. 489, 5822–5857 (2019).
Google Scholar
Leitherer, C. et al. Starburst99: synthesis models for galaxies with active star formation. Astrophys. J. Suppl. Ser. 123, 3–40 (1999).
Google Scholar
Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).
Google Scholar
da Silva, R. L., Fumagalli, M. & Krumholz, M. SLUG—Stochastically Lighting Up Galaxies. I. Methods and validating tests. Astrophys. J. 745, 145 (2012).
Google Scholar
Krumholz, M. R., Fumagalli, M., da Silva, R. L., Rendahl, T. & Parra, J. SLUG – stochastically lighting up galaxies – III. A suite of tools for simulated photometry, spectroscopy, and Bayesian inference with stochastic stellar populations. Mon. Not. R. Astron. Soc. 452, 1447–1467 (2015).
Google Scholar
Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).
Google Scholar
Kehrig, C. et al. The extended He ii λ4686 emission in the extremely metal-poor galaxy SBS 0335 – 052E seen with MUSE. Mon. Not. R. Astron. Soc. 480, 1081–1095 (2018).
Google Scholar
Sarmento, R., Scannapieco, E. & Cohen, S. Following the cosmic evolution of pristine gas. II. The search for pop III–bright galaxies. Astrophys. J. 854, 75 (2018).
Google Scholar
Sarmento, R., Scannapieco, E. & Côté, B. Following the cosmic evolution of pristine gas. III. The observational consequences of the unknown properties of population III stars. Astrophys. J. 871, 206 (2019).
Google Scholar
Trenti, M., Stiavelli, M. & Shull, J. M. Metal-free gas supply at the edge of reionization: late-epoch population III star formation. Astrophys. J. 700, 1672–1679 (2009).
Google Scholar
Vanzella, E. et al. Candidate population III stellar complex at z = 6.629 in the MUSE Deep Lensed Field. Mon. Not. R. Astron. Soc. 494, L81–L85 (2020).
Google Scholar
Abbott, R. et al. GW190521: a binary black hole merger with a total mass of 150M⊙. Phys. Rev. Lett. 125, 101102 (2020).
Google Scholar
Farrell, E. et al. Is GW190521 the merger of black holes from the first stellar generations? Mon. Not. R. Astron. Soc. Lett. 502, L40–L44 (2020).
Google Scholar
Kinugawa, T., Nakamura, T. & Nakano, H. Formation of binary black holes similar to GW190521 with a total mass of ~150M⊙ from population III binary star evolution. Mon. Not. R. Astron. Soc. Lett. 501, L49–L53 (2020).
Google Scholar
Zdziarski, A. A. & Gierliński, M. Radiative processes, spectral states and variability of black-hole binaries. Prog. Theor. Phys. Suppl. 155, 99–119 (2004).
Google Scholar
Holwerda, B. W. et al. Milky Way red dwarfs in the BoRG Survey; galactic scale-height and the distribution of dwarf stars in WFC3 imaging. Astrophys. J. 788, 77 (2014).
Google Scholar
Burgasser, A. J. & Splat Development Team. The SpeX Prism Library Analysis Toolkit (SPLAT): a data curation model. In Proc. Intl Workshop on Stellar Spectral Libraries (IWSSL 2017) (eds Coelho, P. et al.) 7–12 (Astronomical Society of India, 2017).
Hainline, K. N., Shapley, A. E., Greene, J. E. & Steidel, C. C. The rest-frame ultraviolet spectra of UV-selected active galactic nuclei at z ~ 2–3. Astrophys. J. 733, 31 (2011).
Google Scholar