Strange India All Strange Things About India and world


  • 1.

    Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

    ADS 
    MathSciNet 

    Google Scholar 

  • 2.

    Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 3.

    Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    ADS 
    CAS 

    Google Scholar 

  • 4.

    Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quant. Inform. 3, 34 (2017).

    ADS 

    Google Scholar 

  • 5.

    Shulman, M. D. et al. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 336, 202–205 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 6.

    Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 7.

    Zajac, D. M. et al. Resonantly driven CNOT gate for electron spins. Science 359, 439–442 (2018).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • 8.

    Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 9.

    Huang, W. et al. Fidelity benchmarks for two-qubit gates in silicon. Nature 569, 532–536 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    He, Y. et al. A two-qubit gate between phosphorus donor electrons in silicon. Nature 571, 371–375 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    Ma¸dzik, M. T. et al. Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device. Nat. Commun. 12, 181 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Petit, L. et al. Universal quantum logic in hot silicon qubits. Nature 580, 355–359 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 13.

    Hendrickx, N. W., Franke, D. P., Sammak, A., Scappucci, G. & Veldhorst, M. Fast two-qubit logic with holes in germanium. Nature 577, 487–491 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 14.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 15.

    Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 16.

    Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 17.

    Itoh, K. M. & Watanabe, H. Isotope engineering of silicon and diamond for quantum computing and sensing applications. MRS Commun. 4, 143–157 (2014).

    CAS 

    Google Scholar 

  • 18.

    Muhonen, J. T. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9, 986–991 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 19.

    Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 20.

    Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 21.

    Yang, C. H. et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nat. Electron. 2, 151–158 (2019).

    Google Scholar 

  • 22.

    Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 23.

    Scappucci, G. et al. The germanium quantum information route. Nat. Rev. Mater. https://doi.org/10.1038/s41578-020-00262-z (2020).

  • 24.

    Itoh, K. et al. High purity isotopically enriched 70-Ge and 74-Ge single crystals: isotope separation, growth, and properties. J. Mater. Res. 8, 1341–1347 (1993).

    ADS 
    CAS 

    Google Scholar 

  • 25.

    Bulaev, D. V. & Loss, D. Spin relaxation and decoherence of holes in quantum dots. Phys. Rev. Lett. 95, 076805 (2005).

    ADS 

    Google Scholar 

  • 26.

    Lodari, M. et al. Light effective hole mass in undoped Ge/SiGe quantum wells. Phys. Rev. B 100, 041304 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 27.

    Lodari, M. et al. Low percolation density and charge noise with holes in germanium. Mater. Quantum. Technol. 1, 011002 (2020).

    Google Scholar 

  • 28.

    Hendrickx, N. W. et al. Gate-controlled quantum dots and superconductivity in planar germanium. Nat. Commun. 9, 2835 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Lawrie, W. I. L. et al. Quantum dot arrays in silicon and germanium. Appl. Phys. Lett. 116, 080501 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 30.

    Pillarisetty, R. Academic and industry research progress in germanium nanodevices. Nature 479, 324–328 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Bulaev, D. V. & Loss, D. Electric dipole spin resonance for heavy holes in quantum dots. Phys. Rev. Lett. 98, 097202 (2007).

    ADS 

    Google Scholar 

  • 32.

    Maurand, R. et al. A CMOS silicon spin qubit. Nat. Commun. 7, 13575 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Watzinger, H. et al. A germanium hole spin qubit. Nat. Commun. 9, 3902 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Pioro-Ladrière, M. et al. Electrically driven single-electron spin resonance in a slanting Zeeman field. Nat. Phys. 4, 776–779 (2008).

    Google Scholar 

  • 35.

    Tokura, Y., van der Wiel, W. G., Obata, T. & Tarucha, S. Coherent single electron spin control in a slanting Zeeman field. Phys. Rev. Lett. 96, 047202 (2006).

    ADS 

    Google Scholar 

  • 36.

    Sammak, A. et al. Shallow and undoped germanium quantum wells: a playground for spin and hybrid quantum technology. Adv. Funct. Mater. 29, 1807613 (2019).

    Google Scholar 

  • 37.

    van Riggelen, F. et al. A two-dimensional array of single-hole quantum dots. Appl. Phys. Lett. 118, 044002 (2021).

    ADS 

    Google Scholar 

  • 38.

    Hendrickx, N. W. et al. A single-hole spin qubit. Nat. Commun. 11, 3478 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Lawrie, W. I. L. et al. Spin relaxation benchmarks and individual qubit addressability for holes in quantum dots. Nano Lett. 20, 7237–7242 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Danon, J. & Nazarov, Y. V. Pauli spin blockade in the presence of strong spin–orbit coupling. Phys. Rev. B 80, 041301 (2009).

    ADS 

    Google Scholar 

  • 41.

    Yang, C. H. et al. Charge state hysteresis in semiconductor quantum dots. Appl. Phys. Lett. 105, 183505 (2014).

    ADS 

    Google Scholar 

  • 42.

    Harvey-Collard, P. et al. High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism. Phys. Rev. X 8, 021046 (2018).

    CAS 

    Google Scholar 

  • 43.

    Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    ADS 

    Google Scholar 

  • 44.

    Gullans, M. J. & Petta, J. R. Protocol for a resonantly driven three-qubit Toffoli gate with silicon spin qubits. Phys. Rev. B 100, 085419 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 45.

    Hetényi, B., Kloeffel, C. & Loss, D. Exchange interaction of hole-spin qubits in double quantum dots in highly anisotropic semiconductors. Phys. Rev. Res. 2, 033036 (2020).

    Google Scholar 

  • 46.

    Taylor, J. M. et al. Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nat. Phys. 1, 177–183 (2005).

    CAS 

    Google Scholar 

  • 47.

    Veldhorst, M., Eenink, H. G. J., Yang, C. H. & Dzurak, A. S. Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun. 8, 1766 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Li, R. et al. A crossbar network for silicon quantum dot qubits. Sci. Adv. 4, eaar3960 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Hensgens, T. et al. Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Nature 548, 70–73 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 50.

    Seedhouse, A. E. et al. Pauli blockade in silicon quantum dots with spin-orbit control. PRX Quant. 2, 010303 (2021).

    Google Scholar 

  • 51.

    Russ, M. et al. High-fidelity quantum gates in Si/SiGe double quantum dots. Phys. Rev. B 97, 085421 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 52.

    Chan, K. W. et al. Assessment of a silicon quantum dot spin qubit environment via noise spectroscopy. Phys. Rev. Appl. 10, 044017 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 53.

    Wang, Z. et al. Suppressing charge-noise sensitivity in high-speed Ge hole spin-orbit qubits. Preprint at https://arxiv.org/abs/1911.11143 (2019).

  • 54.

    Barnes, E., Kestner, J. P., Nguyen, N. T. T. & Das Sarma, S. Screening of charged impurities with multielectron singlet-triplet spin qubits in quantum dots. Phys. Rev. B 84, 235309 (2011).

    ADS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.