Strange IndiaStrange India


  • Qi, C. C. et al. Interaction of basolateral amygdala, ventral hippocampus and medial prefrontal cortex regulates the consolidation and extinction of social fear. Behav. Brain Funct. 14, 7 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez, M., Calvo‐Torrent, A. & Pico‐Alfonso, M. A. Social defeat and subordination as models of social stress in laboratory rodents: a review. Aggress. Behav. 24, 241–256 (1998).

    Google Scholar 

  • Schlund, M. W. et al. Human social defeat and approach-avoidance: escalating social-evaluative threat and threat of aggression increases social avoidance. J. Exp. Anal. Behav. 115, 157–184 (2021).

    PubMed 

    Google Scholar 

  • Banks, R. ERIC Clearinghouse on Elementary and Early Childhood Education (ERIC Development Team, 1997).

  • Huhman, K. L. et al. Conditioned defeat in male and female Syrian hamsters. Horm. Behav. 44, 293–299 (2003).

    PubMed 

    Google Scholar 

  • Markham, C. M., Taylor, S. L. & Huhman, K. L. Role of amygdala and hippocampus in the neural circuit subserving conditioned defeat in Syrian hamsters. Learn. Mem. 17, 109–116 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Day, D. E., Cooper, M. A., Markham, C. M. & Huhman, K. L. NR2B subunit of the NMDA receptor in the basolateral amygdala is necessary for the acquisition of conditioned defeat in Syrian hamsters. Behav. Brain Res. 217, 55–59 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Markham, C. M., Luckett, C. A. & Huhman, K. L. The medial prefrontal cortex is both necessary and sufficient for the acquisition of conditioned defeat. Neuropharmacology 62, 933–939 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Sakurai, K. et al. Capturing and manipulating activated neuronal ensembles with CANE delineates a hypothalamic social–fear circuit. Neuron 92, 739–753 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Silva, B. A. et al. Independent hypothalamic circuits for social and predator fear. Nat. Neurosci. 16, 1731–1733 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. et al. Hypothalamic control of conspecific self-defense. Cell Rep. 26, 1747–1758.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diaz, V. & Lin, D. Neural circuits for coping with social defeat. Curr. Opin. Neurobiol. 60, 99–107 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Krzywkowski, P., Penna, B. & Gross, C. T. Dynamic encoding of social threat and spatial context in the hypothalamus. eLife 9, e57148 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Newman, S. W. The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann. NY Acad. Sci. 877, 242–257 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Toth, I. & Neumann, I. D. Animal models of social avoidance and social fear. Cell Tissue Res. 354, 107–118 (2013).

    PubMed 

    Google Scholar 

  • Nasanbuyan, N. et al. Oxytocin–oxytocin receptor systems facilitate social defeat posture in male mice. Endocrinology 159, 763–775 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, H. et al. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509, 627–632 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hashikawa, K. et al. Esr1+ cells in the ventromedial hypothalamus control female aggression. Nat. Neurosci. 20, 1580–1590 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Isosaka, T. et al. Htr2a-expressing cells in the central amygdala control the hierarchy between innate and learned fear. Cell 163, 1153–1164 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Mahn, M. et al. High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins. Nat. Commun. 9, 4125 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson, K. J. et al. DREADD agonist 21 is an effective agonist for muscarinic-based DREADDs in vitro and in vivo. ACS Pharmacol. Transl. Sci. 1, 61–72 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao, P. Y., Chiu, Y. M., Yu, J. H. & Chen, S. K. Mapping central projection of oxytocin neurons in unmated mice using Cre and alkaline phosphatase reporter. Front. Neuroanat. 14, 559402 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rhodes, C. H., Morrell, J. I. & Pfaff, D. W. Immunohistochemical analysis of magnocellular elements in rat hypothalamus: distribution and numbers of cells containing neurophysin, oxytocin, and vasopressin. J. Comp. Neurol. 198, 45–64 (1981).

    CAS 
    PubMed 

    Google Scholar 

  • Castel, M. & Morris, J. F. The neurophysin-containing innervation of the forebrain of the mouse. Neuroscience 24, 937–966 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Ludwig, M. Dendritic release of vasopressin and oxytocin. J. Neuroendocrinol. 10, 881–895 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Pow, D. V. & Morris, J. F. Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience 32, 435–439 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, D.-W. Multimodal Analysis of Cell Types in a Hypothalamic Node Controlling Social Behavior in Mice. PhD thesis, California Institute of Technology (2020).

  • Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamaguchi, T. et al. Posterior amygdala regulates sexual and aggressive behaviors in male mice. Nat. Neurosci. 23, 1111–1124 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stagkourakis, S., Spigolon, G., Liu, G. & Anderson, D. J. Experience-dependent plasticity in an innate social behavior is mediated by hypothalamic LTP. Proc. Natl Acad. Sci. USA 117, 25789–25799 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zha, X. et al. VMHvl-projecting Vglut1+ neurons in the posterior amygdala gate territorial aggression. Cell Rep. 31, 107517 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Bekkers, J. M. Changes in dendritic axial resistance alter synaptic integration in cerebellar Purkinje cells. Biophys. J. 100, 1198–1206 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malinow, R. & Miller, J. P. Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation. Nature 320, 529–530 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • Saito, M. et al. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 19, 746–750 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Froemke, R. C. & Young, L. J. Oxytocin, neural plasticity, and social behavior. Annu. Rev. Neurosci. 44, 359–381 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zoicas, I., Slattery, D. A. & Neumann, I. D. Brain oxytocin in social fear conditioning and its extinction: involvement of the lateral septum. Neuropsychopharmacology 39, 3027–3035 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, A. V. et al. Social approach and social vigilance are differentially regulated by oxytocin receptors in the nucleus accumbens. Neuropsychopharmacology 45, 1423–1430 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Menon, R. et al. Oxytocin signaling in the lateral septum prevents social fear during lactation. Curr. Biol. 28, 1066–1078.e6 (2018).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Guzman, Y. F. et al. Fear-enhancing effects of septal oxytocin receptors. Nat. Neurosci. 16, 1185–1187 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duque-Wilckens, N. et al. Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance. Proc. Natl Acad. Sci. USA 117, 26406–26413 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carcea, I. et al. Oxytocin neurons enable social transmission of maternal behaviour. Nature 596, 553–557 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, H. et al. Social touch-like tactile stimulation activates a tachykinin 1–oxytocin pathway to promote social interactions. Neuron 110, 1051–1067.e7 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Tang, Y. et al. Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nat. Neurosci. 23, 1125–1137 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Resendez, S. L. et al. Social stimuli induce activation of oxytocin neurons within the paraventricular nucleus of the hypothalamus to promote social behavior in male mice. J. Neurosci. 40, 2282–2295 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erdozain, A. M. & Penagarikano, O. Oxytocin as treatment for social cognition, not there yet. Front. Psychiatry 10, 930 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Daigle, T. L. et al. A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174, 465–480.e22 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, H. J., Caldwell, H. K., Macbeth, A. H., Tolu, S. G. & Young, W. S. 3rd A conditional knockout mouse line of the oxytocin receptor. Endocrinology 149, 3256–3263 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Franklin, K. B. J. & Paxinos, G. Paxinos and Franklin’s The Mouse Brain in Stereotaxic Coordinates. 4th edn (Academic Press, 2013).

  • Osborne, J. E. & Dudman, J. T. RIVETS: a mechanical system for in vivo and in vitro electrophysiology and imaging. PLoS ONE 9, e89007 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Yin, L. et al. VMHvllCckar cells dynamically control female sexual behaviors over the reproductive cycle. Neuron 110, 3000–3017.e8 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, L. C. et al. Effective modulation of male aggression through lateral septum to medial hypothalamus projection. Curr. Biol. 26, 593–604 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Falkner, A. L. et al. Hierarchical representations of aggression in a hypothalamic–midbrain circuit. Neuron 106, 637–648.e6 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, Y. Y., Yamaguchi, T., Song, S. C., Tritsch, N. X. & Lin, D. A hypothalamic midbrain pathway essential for driving maternal behaviors. Neuron 98, 192–207.e10 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *