Strange India All Strange Things About India and world


  • Nordhaus, J. & Spiegel, D. S. On the orbits of low-mass companions to white dwarfs and the fates of the known exoplanets. Mon. Not. R. Astron. Soc. 432, 500–505 (2013).

    Article 

    Google Scholar 

  • Madappatt, N., De Marco, O. & Villaver, E. The effect of tides on the population of PN from interacting binaries. Mon. Not. R. Astron. Soc. 463, 1040–1056 (2016).

    Article 

    Google Scholar 

  • Gallet, F., Bolmont, E., Mathis, S., Charbonnel, C. & Amard, L. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets. I. From the PMS to the RGB at solar metallicity. Astron. Astrophys. 604, A112 (2017).

    Article 

    Google Scholar 

  • Ronco, M. P. et al. How Jupiters save or destroy inner Neptunes around evolved stars. Astrophys. J. Lett. 898, L23 (2020).

    Article 

    Google Scholar 

  • Grunblatt, S. K. et al. TESS giants transiting giants. II. The hottest Jupiters orbiting evolved stars. Astron. J. 163, 120 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sato, B. et al. Planetary companions around three intermediate-mass G and K giants: 18 Delphini, ξ Aquilae, and HD 81688. Publ. Astron. Soc. Jpn 60, 539–550 (2008).

  • Kunitomo, M., Ikoma, M., Sato, B., Katsuta, Y. & Ida, S. Planet engulfment by ~1.5–3 M red giants. Astrophys. J. 737, 66 (2011).

    Article 

    Google Scholar 

  • Villaver, E., Livio, M., Mustill, A. J. & Siess, L. Hot Jupiters and cool stars. Astrophys. J. 794, 3 (2014).

    Article 

    Google Scholar 

  • MacLeod, M., Cantiello, M. & Soares-Furtado, M. Planetary engulfment in the Hertzsprung–Russell diagram. Astrophys. J. Lett. 853, L1 (2018).

    Article 

    Google Scholar 

  • Lee, B.-C. et al. Search for exoplanet around northern circumpolar stars. Four planets around HD 11755, HD 12648, HD 24064, and 8 Ursae Minoris. Astron. Astrophys. 584, A79 (2015).

    Article 

    Google Scholar 

  • Perets, H. B. Planets in evolved binary systems. In AIP Conf. Proc. Planetary Systems Beyond the Main Sequence (eds Schuh, S. et al.) Vol. 1331, 56–75 (AIP, 2011).

  • Hatzes, A. P. et al. The radial velocity variability of the K-giant γ Draconis: stellar variability masquerading as a planet. Astron. J. 155, 120 (2018).

    Article 

    Google Scholar 

  • Döllinger, M. P. & Hartmann, M. A sanity check for planets around evolved stars. Astrophys. J. Suppl. Ser. 256, 10 (2021).

    Article 

    Google Scholar 

  • Vogt, S. S. et al. HIRES: the high-resolution echelle spectrometer on the Keck 10-m telescope. In Proc. SPIE on Instrumentation in Astronomy VIII (eds Crawford, D. L. & Craine, E. R.) Vol. 2198, 362 (SPIE, 1994).

  • Bedding, T. R. et al. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars. Nature 471, 608–611 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vrard, M., Mosser, B. & Samadi, R. Period spacings in red giants. II. Automated measurement. Astron. Astrophys. 588, A87 (2016).

    Article 

    Google Scholar 

  • Maxted, P. F. L., Napiwotzki, R., Dobbie, P. D. & Burleigh, M. R. Survival of a brown dwarf after engulfment by a red giant star. Nature 442, 543–545 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Villaver, E. & Livio, M. The orbital evolution of gas giant planets around giant stars. Astrophys. J. 705, L81–L85 (2009).

    Article 

    Google Scholar 

  • Rasio, F. A. & Ford, E. B. Dynamical instabilities and the formation of extrasolar planetary systems. Science 274, 954–956 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hurley, J. R., Tout, C. A. & Pols, O. R. Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc. 329, 897–928 (2002).

    Article 

    Google Scholar 

  • Izzard, R. G., Jeffery, C. S. & Lattanzio, J. Origin of the early-type R stars: a binary-merger solution to a century-old problem? Astron. Astrophys. 470, 661–673 (2007).

    Article 
    CAS 

    Google Scholar 

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

    Article 

    Google Scholar 

  • Maxted, P. F. L. et al. EL CVn-type binaries – discovery of 17 helium white dwarf precursors in bright eclipsing binary star systems. Mon. Not. R. Astron. Soc. 437, 1681–1697 (2014).

    Article 
    CAS 

    Google Scholar 

  • Tokovinin, A., Thomas, S., Sterzik, M. & Udry, S. Tertiary companions to close spectroscopic binaries. Astron. Astrophys. 450, 681–693 (2006).

    Article 

    Google Scholar 

  • Lagos, F., Schreiber, M. R., Parsons, S. G., Gänsicke, B. T. & Godoy, N. Most EL CVn systems are inner binaries of hierarchical triples. Mon. Not. R. Astron. Soc. 499, L121–L125 (2020).

    Article 

    Google Scholar 

  • Zhang, X. & Jeffery, C. S. White dwarf–red giant mergers, early-type R stars, J stars and lithium. Mon. Not. R. Astron. Soc. 430, 2113–2120 (2013).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X., Jeffery, C. S., Li, Y. & Bi, S. Population synthesis of helium white dwarf–red giant star mergers and the formation of lithium-rich giants and carbon stars. Astrophys. J. 889, 33 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kumar, Y. B., Reddy, B. E. & Lambert, D. L. Origin of lithium enrichment in K giants. Astrophys. J. Lett. 730, L12 (2011).

    Article 

    Google Scholar 

  • Charbonnel, C. et al. Lithium in red giant stars: constraining non-standard mixing with large surveys in the Gaia era. Astron. Astrophys. 633, A34 (2020).

    Article 
    CAS 

    Google Scholar 

  • Magrini, L. et al. Gaia-ESO survey: lithium abundances in open cluster red clump stars. Astron. Astrophys. 655, A23 (2021).

    Article 
    CAS 

    Google Scholar 

  • Chanamé, J., Pinsonneault, M. H., Aguilera-Gómez, C. & Zinn, J. C. Mass matters: no evidence for ubiquitous lithium production in low-mass clump giants. Astrophys. J. 933, 58 (2022).

    Article 

    Google Scholar 

  • Kraus, A. L., Ireland, M. J., Huber, D., Mann, A. W. & Dupuy, T. J. The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. Astron. J. 152, 8 (2016).

    Article 

    Google Scholar 

  • Moe, M. & Kratter, K. M. Impact of binary stars on planet statistics – I. Planet occurrence rates and trends with stellar mass. Mon. Not. R. Astron. Soc. 507, 3593–3611 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kim, K.-M. et al. The BOES spectropolarimeter for Zeeman measurements of stellar magnetic fields. Publ. Astron. Soc. Pac. 119, 1052–1062 (2007).

    Article 

    Google Scholar 

  • Howard, A. W. et al. The California Planet Survey. I. Four new giant exoplanets. Astrophys. J. 721, 1467–1481 (2010).

    Article 
    CAS 

    Google Scholar 

  • Butler, R. P. et al. Attaining Doppler precision of 3 m s−1. Publ. Astron. Soc. Pac. 108, 500–509 (1996).

    Article 

    Google Scholar 

  • Foreman-Mackey, D. et al. exoplanet: gradient-based probabilistic inference for exoplanet data & other astronomical time series. J. Open Source Softw. 6, 3285 (2021).

    Article 

    Google Scholar 

  • Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016).

    Article 

    Google Scholar 

  • Kipping, D. M. Parametrizing the exoplanet eccentricity distribution with the Beta distribution. Mon. Not. R. Astron. Soc. 434, L51–L55 (2013).

    Article 

    Google Scholar 

  • Hoffman, M. D. & Gelman, A. The No-U-Turn Sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Preprint at https://arxiv.org/abs/1111.4246 (2011).

  • Yu, J., Huber, D., Bedding, T. R. & Stello, D. Predicting radial-velocity jitter induced by stellar oscillations based on Kepler data. Mon. Not. R. Astron. Soc. 480, L48–L53 (2018).

    Article 
    CAS 

    Google Scholar 

  • Tayar, J., Stassun, K. G. & Corsaro, E. Predicting granulation “flicker” and radial velocity “jitter” from spectroscopic observables. Astrophys. J. 883, 195 (2019).

    Article 
    CAS 

    Google Scholar 

  • Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).

    MATH 

    Google Scholar 

  • Lubin, J. et al. TESS-Keck Survey. IX. Masses of three sub-Neptunes orbiting HD 191939 and the discovery of a warm Jovian plus a distant substellar companion. Astrophys. J. 163, 101 (2022).

    CAS 

    Google Scholar 

  • Brandt, T. D. The Hipparcos–Gaia catalog of accelerations: Gaia EDR3 edition. Astrophys. J. Suppl. Ser. 254, 42 (2021).

    Article 

    Google Scholar 

  • Isaacson, H. & Fischer, D. Chromospheric activity and jitter measurements for 2630 stars on the California Planet Search. Astrophys. J. 725, 875–885 (2010).

    Article 
    CAS 

    Google Scholar 

  • Zechmeister, M. & Kürster, M. The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys. 496, 577–584 (2009).

    Article 

    Google Scholar 

  • Liu, Y. J. et al. The lithium abundances of a large sample of red giants. Astrophys. J. 785, 94 (2014).

    Article 

    Google Scholar 

  • Petit, P. et al. PolarBase: a database of high-resolution spectropolarimetric stellar observations. Publ. Astron. Soc. Pac. 126, 469–475 (2014).

    Article 

    Google Scholar 

  • Donati, J.-F., Semel, M., Carter, B. D., Rees, D. E., & Cameron, A. C. Spectropolarimetric observations of active stars. Mon. Not. R. Astron. Soc. 291, 658–682 (1997).

    Article 

    Google Scholar 

  • Kochukhov, O., Makaganiuk, V. & Piskunov, N. Least-squares deconvolution of the stellar intensity and polarization spectra. Astron. Astrophys. 524, A5 (2010).

    Article 

    Google Scholar 

  • Kupka, F., Piskunov, N., Ryabchikova, T. A., Stempels, H. C. & Weiss, W. W. VALD-2: progress of the Vienna Atomic Line Data Base. Astron. Astrophys. Suppl. Ser. 138, 119–133 (1999).

    Article 
    CAS 

    Google Scholar 

  • Aurière, M. et al. The magnetic fields at the surface of active single G-K giants. Astron. Astrophys. 574, A90 (2015).

    Article 

    Google Scholar 

  • Gaulme, P. et al. Active red giants: close binaries versus single rapid rotators. Astron. Astrophys. 639, A63 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wheeler, A. J., Hogg, D. W. & Ness, M. An unsupervised method for identifying X-enriched stars directly from spectra: Li in LAMOST. Astrophys. J. 908, 247 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dumusque, X., Boisse, I. & Santos, N. C. SOAP 2.0: a tool to estimate the photometric and radial velocity variations induced by stellar spots and plages. Astrophys. J. 796, 132 (2014).

    Article 

    Google Scholar 

  • van Leeuwen, F. Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007).

    Article 

    Google Scholar 

  • Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).

    Article 

    Google Scholar 

  • Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) light curve server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).

    Article 

    Google Scholar 

  • Hedges, C. et al. Systematics-insensitive periodogram for finding periods in TESS observations of long-period rotators. Res. Not. Am. Astron. Soc. 4, 220 (2020).

    Google Scholar 

  • Jenkins, J. M. et al. The TESS science processing operations center. In Proc. SPIE on Software and Cyberinfrastructure for Astronomy IV (eds Chiozzi, G. & Guzman, J. C.) Vol. 9913, 99133E (SPIE, 2016).

  • Themeßl, N., Kuszlewicz, J. S., García Saravia Ortiz de Montellano, A. & Hekker, S. From light-curves to frequencies of oscillation modes using TACO. In Proc. Stars and Their Variability, Observed from Space (eds Neiner, C. et al.) 287–291 (Stars from Space, 2020).

  • García Saravia Ortiz de Montellano, A., Hekker, S. & Themeßl, N. Automated asteroseismic peak detections. Mon. Not. R. Astron. Soc. 476, 1470–1496 (2018).

    Article 

    Google Scholar 

  • Mosser, B. et al. The universal red-giant oscillation pattern. An automated determination with CoRoT data. Astron. Astrophys. 525, L9 (2011).

    Article 

    Google Scholar 

  • Tassoul, M. Asymptotic approximations for stellar nonradial pulsations. Astrophys. J. Suppl. Ser. 43, 469–490 (1980).

    Article 

    Google Scholar 

  • Mosser, B., Vrard, M., Belkacem, K., Deheuvels, S. & Goupil, M. J. Period spacings in red giants. I. Disentangling rotation and revealing core structure discontinuities. Astron. Astrophys. 584, A50 (2015).

    Article 

    Google Scholar 

  • Mosser, B., Pinçon, C., Belkacem, K., Takata, M. & Vrard, M. Period spacings in red giants. III. Coupling factors of mixed modes. Astron. Astrophys. 600, A1 (2017).

    Article 

    Google Scholar 

  • Rodrigues, T. S. et al. Bayesian distances and extinctions for giants observed by Kepler and APOGEE. Mon. Not. R. Astron. Soc. 445, 2758–2776 (2014).

    Article 

    Google Scholar 

  • Rodrigues, T. S. et al. Determining stellar parameters of asteroseismic targets: going beyond the use of scaling relations. Mon. Not. R. Astron. Soc. 467, 1433–1448 (2017).

    CAS 

    Google Scholar 

  • Yıldız, M., Çelik Orhan, Z. & Kayhan, C. Fundamental properties of Kepler and CoRoT targets – III. Tuning scaling relations using the first adiabatic exponent. Mon. Not. R. Astron. Soc. 462, 1577–1590 (2016).

    Article 

    Google Scholar 

  • Jiang, C. & Gizon, L. BESTP — an automated Bayesian modeling tool for asteroseismology. Res. Astron. Astrophys. 21, 226 (2021).

    Article 
    CAS 

    Google Scholar 

  • Aguirre Børsen-Koch, V. et al. The BAyesian STellar algorithm (BASTA): a fitting tool for stellar studies, asteroseismology, exoplanets, and Galactic archaeology. Mon. Not. R. Astron. Soc. 509, 4344–4364 (2022).

    Article 

    Google Scholar 

  • Tayar, J., Claytor, Z. R., Huber, D. & van Saders, J. A guide to realistic uncertainties on the fundamental properties of solar-type exoplanet host stars. Astrophys. J. 927, 31 (2022).

    Article 

    Google Scholar 

  • Sharma, S., Stello, D., Bland-Hawthorn, J., Huber, D. & Bedding, T. R. Stellar population synthesis based modeling of the Milky Way using asteroseismology of 13,000 Kepler red giants. Astrophys. J. 822, 15 (2016).

    Article 

    Google Scholar 

  • Stello, D. & Sharma, S. Extension of the Asfgrid for correcting asteroseismic large frequency separations. Res. Not. Am. Astron. Soc. 6, 168 (2022).

    Google Scholar 

  • Stassun, K. G. & Torres, G. Eclipsing binary stars as benchmarks for trigonometric parallaxes in the Gaia era. Astron. J. 152, 180 (2016).

    Article 

    Google Scholar 

  • Stassun, K. G., Collins, K. A. & Gaudi, B. S. Accurate empirical radii and masses of planets and their host stars with Gaia parallaxes. Astron. J. 153, 136 (2017).

    Article 

    Google Scholar 

  • Stassun, K. G., Corsaro, E., Pepper, J. A. & Gaudi, B. S. Empirical accurate masses and radii of single stars with TESS and Gaia. Astron. J. 155, 22 (2018).

    Article 

    Google Scholar 

  • Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    Article 

    Google Scholar 

  • Stassun, K. G. & Torres, G. Parallax systematics and photocenter motions of benchmark eclipsing binaries in Gaia EDR3. Astrophys. J. Lett. 907, L33 (2021).

    Article 

    Google Scholar 

  • Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).

    Article 

    Google Scholar 

  • Hidalgo, S. L. et al. The updated BaSTI stellar evolution models and isochrones. I. Solar-scaled calculations. Astrophys. J. 856, 125 (2018).

    Article 

    Google Scholar 

  • Dotter, A. et al. The Dartmouth Stellar Evolution Database. Astrophys. J. Suppl. Ser. 178, 89–101 (2008).

    Article 
    CAS 

    Google Scholar 

  • Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    Article 
    CAS 

    Google Scholar 

  • Weiss, A. & Schlattl, H. GARSTEC—the Garching Stellar Evolution Code: the direct descendant of the legendary Kippenhahn code. Astrophys. Space Sci. 316, 99–106 (2008).

    Article 

    Google Scholar 

  • Goldreich, P. & Soter, S. Q in the solar system. Icarus 5, 375–389 (1966).

    Article 

    Google Scholar 

  • Wu, Y. Origin of tidal dissipation in Jupiter: II. The value of Q. Astrophys. J. 635, 688–710 (2005).

    Google Scholar 

  • Essick, R. & Weinberg, N. N. Orbital decay of hot Jupiters due to nonlinear tidal dissipation within solar-type hosts. Astrophys. J. 816, 18 (2016).

    Article 

    Google Scholar 

  • Fortney, J. J., Dawson, R. I. & Komacek, T. D. Hot Jupiters: origins, structure, atmospheres. J. Geophys. Res. Planets 126, e2020JE006629 (2021).

    Article 

    Google Scholar 

  • Spiegel, D. S., Burrows, A. & Milsom, J. A. The deuterium-burning mass limit for brown dwarfs and giant planets. Astrophys. J. 727, 57 (2011).

    Article 

    Google Scholar 

  • Belokurov, V. et al. Unresolved stellar companions with Gaia DR2 astrometry. Mon. Not. R. Astron. Soc. 496, 1922–1940 (2020).

    Article 
    CAS 

    Google Scholar 

  • Penoyre, Z., Belokurov, V., Evans, N. W., Everall, A. & Koposov, S. E. Binary deviations from single object astrometry. Mon. Not. R. Astron. Soc. 495, 321–337 (2020).

    Article 

    Google Scholar 

  • Rybizki, J. et al. A classifier for spurious astrometric solutions in Gaia eDR3. Mon. Not. R. Astron. Soc. 510, 2597–2616 (2022).

    Article 

    Google Scholar 

  • Penoyre, Z., Belokurov, V. & Evans, N. W. Astrometric identification of nearby binary stars – I. Predicted astrometric signals. Mon. Not. R. Astron. Soc. 513, 2437–2456 (2022).

    Article 

    Google Scholar 

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

    Article 

    Google Scholar 

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. Ser. 220, 15 (2015).

    Article 

    Google Scholar 

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234, 34 (2018).

    Article 

    Google Scholar 

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser. 243, 10 (2019).

    Article 
    CAS 

    Google Scholar 

  • Holman, M. J. & Wiegert, P. A. Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999).

    Article 

    Google Scholar 

  • Rappaport, S., Verbunt, F. & Joss, P. C. A new technique for calculations of binary stellar evolution, with application to magnetic braking. Astrophys. J. 275, 713–731 (1983).

    Article 

    Google Scholar 

  • Tauris, T. M. & van den Heuvel, E. P. J. in Compact Stellar X-ray Sources (eds Lewin, W. & van der Klis, M.) 623–666 (Cambridge Univ. Press, 2006).

  • Raghavan, D. et al. A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. 190, 1–42 (2010).

    Article 
    CAS 

    Google Scholar 

  • Moe, M. & Di Stefano, R. Mind your Ps and Qs: the interrelation between period (P) and mass-ratio (Q) distributions of binary stars. Astrophys. J. Suppl. Ser. 230, 15 (2017).

    Article 

    Google Scholar 

  • Chen, X., Maxted, P. F. L., Li, J. & Han, Z. The formation of EL CVn-type binaries. Mon. Not. R. Astron. Soc. 467, 1874–1889 (2017).

    CAS 

    Google Scholar 

  • Miller, G. E. & Scalo, J. M. The initial mass function and stellar birthrate in the solar neighborhood.J. Astophys. Suppl. Ser. 41, 513–547 (1979).

    Article 
    CAS 

    Google Scholar 

  • Eggleton, P. P., Fitchett, M. J. & Tout, C. A. The distribution of visual binaries with two bright components. Astrophys. J. 347, 998–1011 (1989).

    Article 

    Google Scholar 

  • Sneden, C., Brown, J., Dutchover, E. Jr & Lambert, D. A search for lithium-rich giant stars. Bull. Am. Astron. Soc. 16, 490 (1984).

    Google Scholar 

  • Yan, H.-L. et al. The nature of the lithium enrichment in the most Li-rich giant star. Nat. Astron. 2, 790–795 (2018).

    Article 

    Google Scholar 

  • Rui, N. Z. & Fuller, J. Asteroseismic fingerprints of stellar mergers. Mon. Not. R. Astron. Soc. 508, 1618–1631 (2021).

    Article 

    Google Scholar 

  • Kochanek, C. S., Adams, S. M. & Belczynski, K. Stellar mergers are common. Mon. Not. R. Astron. Soc. 443, 1319–1328 (2014).

    Article 

    Google Scholar 

  • Price-Whelan, A. M. et al. Close binary companions to APOGEE DR16 stars: 20,000 binary-star systems across the color–magnitude diagram. Astrophys. J. 895, 2 (2020).

    Article 
    CAS 

    Google Scholar 

  • Reffert, S. Compilation of Discoveries of Substellar Companions around Giant Stars (Heidelberg Univ., accessed 22 February 2023); https://www.lsw.uni-heidelberg.de/users/sreffert/giantplanets/giantplanets.php.

  • Ivanova, N. et al. Common envelope evolution: where we stand and how we can move forward. Astron. Astrophys. Rev. 21, 59 (2013).

    Article 

    Google Scholar 

  • Scherbak, P. & Fuller, J. White dwarf binaries suggest a common envelope efficiency α ~ 1/3. Mon. Not. R. Astron. Soc. 518, 3966–3984 (2023).

    Article 

    Google Scholar 

  • Eggleton, P. P. Approximations to the radii of Roche lobes. Astrophys. J. 268, 368–369 (1983).

    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *