Nordhaus, J. & Spiegel, D. S. On the orbits of low-mass companions to white dwarfs and the fates of the known exoplanets. Mon. Not. R. Astron. Soc. 432, 500–505 (2013).
Google Scholar
Madappatt, N., De Marco, O. & Villaver, E. The effect of tides on the population of PN from interacting binaries. Mon. Not. R. Astron. Soc. 463, 1040–1056 (2016).
Google Scholar
Gallet, F., Bolmont, E., Mathis, S., Charbonnel, C. & Amard, L. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets. I. From the PMS to the RGB at solar metallicity. Astron. Astrophys. 604, A112 (2017).
Google Scholar
Ronco, M. P. et al. How Jupiters save or destroy inner Neptunes around evolved stars. Astrophys. J. Lett. 898, L23 (2020).
Google Scholar
Grunblatt, S. K. et al. TESS giants transiting giants. II. The hottest Jupiters orbiting evolved stars. Astron. J. 163, 120 (2022).
Google Scholar
Sato, B. et al. Planetary companions around three intermediate-mass G and K giants: 18 Delphini, ξ Aquilae, and HD 81688. Publ. Astron. Soc. Jpn 60, 539–550 (2008).
Kunitomo, M., Ikoma, M., Sato, B., Katsuta, Y. & Ida, S. Planet engulfment by ~1.5–3 M⊙ red giants. Astrophys. J. 737, 66 (2011).
Google Scholar
Villaver, E., Livio, M., Mustill, A. J. & Siess, L. Hot Jupiters and cool stars. Astrophys. J. 794, 3 (2014).
Google Scholar
MacLeod, M., Cantiello, M. & Soares-Furtado, M. Planetary engulfment in the Hertzsprung–Russell diagram. Astrophys. J. Lett. 853, L1 (2018).
Google Scholar
Lee, B.-C. et al. Search for exoplanet around northern circumpolar stars. Four planets around HD 11755, HD 12648, HD 24064, and 8 Ursae Minoris. Astron. Astrophys. 584, A79 (2015).
Google Scholar
Perets, H. B. Planets in evolved binary systems. In AIP Conf. Proc. Planetary Systems Beyond the Main Sequence (eds Schuh, S. et al.) Vol. 1331, 56–75 (AIP, 2011).
Hatzes, A. P. et al. The radial velocity variability of the K-giant γ Draconis: stellar variability masquerading as a planet. Astron. J. 155, 120 (2018).
Google Scholar
Döllinger, M. P. & Hartmann, M. A sanity check for planets around evolved stars. Astrophys. J. Suppl. Ser. 256, 10 (2021).
Google Scholar
Vogt, S. S. et al. HIRES: the high-resolution echelle spectrometer on the Keck 10-m telescope. In Proc. SPIE on Instrumentation in Astronomy VIII (eds Crawford, D. L. & Craine, E. R.) Vol. 2198, 362 (SPIE, 1994).
Bedding, T. R. et al. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars. Nature 471, 608–611 (2011).
Google Scholar
Vrard, M., Mosser, B. & Samadi, R. Period spacings in red giants. II. Automated measurement. Astron. Astrophys. 588, A87 (2016).
Google Scholar
Maxted, P. F. L., Napiwotzki, R., Dobbie, P. D. & Burleigh, M. R. Survival of a brown dwarf after engulfment by a red giant star. Nature 442, 543–545 (2006).
Google Scholar
Villaver, E. & Livio, M. The orbital evolution of gas giant planets around giant stars. Astrophys. J. 705, L81–L85 (2009).
Google Scholar
Rasio, F. A. & Ford, E. B. Dynamical instabilities and the formation of extrasolar planetary systems. Science 274, 954–956 (1996).
Google Scholar
Hurley, J. R., Tout, C. A. & Pols, O. R. Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc. 329, 897–928 (2002).
Google Scholar
Izzard, R. G., Jeffery, C. S. & Lattanzio, J. Origin of the early-type R stars: a binary-merger solution to a century-old problem? Astron. Astrophys. 470, 661–673 (2007).
Google Scholar
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).
Google Scholar
Maxted, P. F. L. et al. EL CVn-type binaries – discovery of 17 helium white dwarf precursors in bright eclipsing binary star systems. Mon. Not. R. Astron. Soc. 437, 1681–1697 (2014).
Google Scholar
Tokovinin, A., Thomas, S., Sterzik, M. & Udry, S. Tertiary companions to close spectroscopic binaries. Astron. Astrophys. 450, 681–693 (2006).
Google Scholar
Lagos, F., Schreiber, M. R., Parsons, S. G., Gänsicke, B. T. & Godoy, N. Most EL CVn systems are inner binaries of hierarchical triples. Mon. Not. R. Astron. Soc. 499, L121–L125 (2020).
Google Scholar
Zhang, X. & Jeffery, C. S. White dwarf–red giant mergers, early-type R stars, J stars and lithium. Mon. Not. R. Astron. Soc. 430, 2113–2120 (2013).
Google Scholar
Zhang, X., Jeffery, C. S., Li, Y. & Bi, S. Population synthesis of helium white dwarf–red giant star mergers and the formation of lithium-rich giants and carbon stars. Astrophys. J. 889, 33 (2020).
Google Scholar
Kumar, Y. B., Reddy, B. E. & Lambert, D. L. Origin of lithium enrichment in K giants. Astrophys. J. Lett. 730, L12 (2011).
Google Scholar
Charbonnel, C. et al. Lithium in red giant stars: constraining non-standard mixing with large surveys in the Gaia era. Astron. Astrophys. 633, A34 (2020).
Google Scholar
Magrini, L. et al. Gaia-ESO survey: lithium abundances in open cluster red clump stars. Astron. Astrophys. 655, A23 (2021).
Google Scholar
Chanamé, J., Pinsonneault, M. H., Aguilera-Gómez, C. & Zinn, J. C. Mass matters: no evidence for ubiquitous lithium production in low-mass clump giants. Astrophys. J. 933, 58 (2022).
Google Scholar
Kraus, A. L., Ireland, M. J., Huber, D., Mann, A. W. & Dupuy, T. J. The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. Astron. J. 152, 8 (2016).
Google Scholar
Moe, M. & Kratter, K. M. Impact of binary stars on planet statistics – I. Planet occurrence rates and trends with stellar mass. Mon. Not. R. Astron. Soc. 507, 3593–3611 (2021).
Google Scholar
Kim, K.-M. et al. The BOES spectropolarimeter for Zeeman measurements of stellar magnetic fields. Publ. Astron. Soc. Pac. 119, 1052–1062 (2007).
Google Scholar
Howard, A. W. et al. The California Planet Survey. I. Four new giant exoplanets. Astrophys. J. 721, 1467–1481 (2010).
Google Scholar
Butler, R. P. et al. Attaining Doppler precision of 3 m s−1. Publ. Astron. Soc. Pac. 108, 500–509 (1996).
Google Scholar
Foreman-Mackey, D. et al. exoplanet: gradient-based probabilistic inference for exoplanet data & other astronomical time series. J. Open Source Softw. 6, 3285 (2021).
Google Scholar
Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016).
Google Scholar
Kipping, D. M. Parametrizing the exoplanet eccentricity distribution with the Beta distribution. Mon. Not. R. Astron. Soc. 434, L51–L55 (2013).
Google Scholar
Hoffman, M. D. & Gelman, A. The No-U-Turn Sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Preprint at https://arxiv.org/abs/1111.4246 (2011).
Yu, J., Huber, D., Bedding, T. R. & Stello, D. Predicting radial-velocity jitter induced by stellar oscillations based on Kepler data. Mon. Not. R. Astron. Soc. 480, L48–L53 (2018).
Google Scholar
Tayar, J., Stassun, K. G. & Corsaro, E. Predicting granulation “flicker” and radial velocity “jitter” from spectroscopic observables. Astrophys. J. 883, 195 (2019).
Google Scholar
Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).
Google Scholar
Lubin, J. et al. TESS-Keck Survey. IX. Masses of three sub-Neptunes orbiting HD 191939 and the discovery of a warm Jovian plus a distant substellar companion. Astrophys. J. 163, 101 (2022).
Google Scholar
Brandt, T. D. The Hipparcos–Gaia catalog of accelerations: Gaia EDR3 edition. Astrophys. J. Suppl. Ser. 254, 42 (2021).
Google Scholar
Isaacson, H. & Fischer, D. Chromospheric activity and jitter measurements for 2630 stars on the California Planet Search. Astrophys. J. 725, 875–885 (2010).
Google Scholar
Zechmeister, M. & Kürster, M. The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys. 496, 577–584 (2009).
Google Scholar
Liu, Y. J. et al. The lithium abundances of a large sample of red giants. Astrophys. J. 785, 94 (2014).
Google Scholar
Petit, P. et al. PolarBase: a database of high-resolution spectropolarimetric stellar observations. Publ. Astron. Soc. Pac. 126, 469–475 (2014).
Google Scholar
Donati, J.-F., Semel, M., Carter, B. D., Rees, D. E., & Cameron, A. C. Spectropolarimetric observations of active stars. Mon. Not. R. Astron. Soc. 291, 658–682 (1997).
Google Scholar
Kochukhov, O., Makaganiuk, V. & Piskunov, N. Least-squares deconvolution of the stellar intensity and polarization spectra. Astron. Astrophys. 524, A5 (2010).
Google Scholar
Kupka, F., Piskunov, N., Ryabchikova, T. A., Stempels, H. C. & Weiss, W. W. VALD-2: progress of the Vienna Atomic Line Data Base. Astron. Astrophys. Suppl. Ser. 138, 119–133 (1999).
Google Scholar
Aurière, M. et al. The magnetic fields at the surface of active single G-K giants. Astron. Astrophys. 574, A90 (2015).
Google Scholar
Gaulme, P. et al. Active red giants: close binaries versus single rapid rotators. Astron. Astrophys. 639, A63 (2020).
Google Scholar
Wheeler, A. J., Hogg, D. W. & Ness, M. An unsupervised method for identifying X-enriched stars directly from spectra: Li in LAMOST. Astrophys. J. 908, 247 (2021).
Google Scholar
Dumusque, X., Boisse, I. & Santos, N. C. SOAP 2.0: a tool to estimate the photometric and radial velocity variations induced by stellar spots and plages. Astrophys. J. 796, 132 (2014).
Google Scholar
van Leeuwen, F. Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007).
Google Scholar
Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).
Google Scholar
Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) light curve server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).
Google Scholar
Hedges, C. et al. Systematics-insensitive periodogram for finding periods in TESS observations of long-period rotators. Res. Not. Am. Astron. Soc. 4, 220 (2020).
Jenkins, J. M. et al. The TESS science processing operations center. In Proc. SPIE on Software and Cyberinfrastructure for Astronomy IV (eds Chiozzi, G. & Guzman, J. C.) Vol. 9913, 99133E (SPIE, 2016).
Themeßl, N., Kuszlewicz, J. S., García Saravia Ortiz de Montellano, A. & Hekker, S. From light-curves to frequencies of oscillation modes using TACO. In Proc. Stars and Their Variability, Observed from Space (eds Neiner, C. et al.) 287–291 (Stars from Space, 2020).
García Saravia Ortiz de Montellano, A., Hekker, S. & Themeßl, N. Automated asteroseismic peak detections. Mon. Not. R. Astron. Soc. 476, 1470–1496 (2018).
Google Scholar
Mosser, B. et al. The universal red-giant oscillation pattern. An automated determination with CoRoT data. Astron. Astrophys. 525, L9 (2011).
Google Scholar
Tassoul, M. Asymptotic approximations for stellar nonradial pulsations. Astrophys. J. Suppl. Ser. 43, 469–490 (1980).
Google Scholar
Mosser, B., Vrard, M., Belkacem, K., Deheuvels, S. & Goupil, M. J. Period spacings in red giants. I. Disentangling rotation and revealing core structure discontinuities. Astron. Astrophys. 584, A50 (2015).
Google Scholar
Mosser, B., Pinçon, C., Belkacem, K., Takata, M. & Vrard, M. Period spacings in red giants. III. Coupling factors of mixed modes. Astron. Astrophys. 600, A1 (2017).
Google Scholar
Rodrigues, T. S. et al. Bayesian distances and extinctions for giants observed by Kepler and APOGEE. Mon. Not. R. Astron. Soc. 445, 2758–2776 (2014).
Google Scholar
Rodrigues, T. S. et al. Determining stellar parameters of asteroseismic targets: going beyond the use of scaling relations. Mon. Not. R. Astron. Soc. 467, 1433–1448 (2017).
Google Scholar
Yıldız, M., Çelik Orhan, Z. & Kayhan, C. Fundamental properties of Kepler and CoRoT targets – III. Tuning scaling relations using the first adiabatic exponent. Mon. Not. R. Astron. Soc. 462, 1577–1590 (2016).
Google Scholar
Jiang, C. & Gizon, L. BESTP — an automated Bayesian modeling tool for asteroseismology. Res. Astron. Astrophys. 21, 226 (2021).
Google Scholar
Aguirre Børsen-Koch, V. et al. The BAyesian STellar algorithm (BASTA): a fitting tool for stellar studies, asteroseismology, exoplanets, and Galactic archaeology. Mon. Not. R. Astron. Soc. 509, 4344–4364 (2022).
Google Scholar
Tayar, J., Claytor, Z. R., Huber, D. & van Saders, J. A guide to realistic uncertainties on the fundamental properties of solar-type exoplanet host stars. Astrophys. J. 927, 31 (2022).
Google Scholar
Sharma, S., Stello, D., Bland-Hawthorn, J., Huber, D. & Bedding, T. R. Stellar population synthesis based modeling of the Milky Way using asteroseismology of 13,000 Kepler red giants. Astrophys. J. 822, 15 (2016).
Google Scholar
Stello, D. & Sharma, S. Extension of the Asfgrid for correcting asteroseismic large frequency separations. Res. Not. Am. Astron. Soc. 6, 168 (2022).
Stassun, K. G. & Torres, G. Eclipsing binary stars as benchmarks for trigonometric parallaxes in the Gaia era. Astron. J. 152, 180 (2016).
Google Scholar
Stassun, K. G., Collins, K. A. & Gaudi, B. S. Accurate empirical radii and masses of planets and their host stars with Gaia parallaxes. Astron. J. 153, 136 (2017).
Google Scholar
Stassun, K. G., Corsaro, E., Pepper, J. A. & Gaudi, B. S. Empirical accurate masses and radii of single stars with TESS and Gaia. Astron. J. 155, 22 (2018).
Google Scholar
Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).
Google Scholar
Stassun, K. G. & Torres, G. Parallax systematics and photocenter motions of benchmark eclipsing binaries in Gaia EDR3. Astrophys. J. Lett. 907, L33 (2021).
Google Scholar
Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).
Google Scholar
Hidalgo, S. L. et al. The updated BaSTI stellar evolution models and isochrones. I. Solar-scaled calculations. Astrophys. J. 856, 125 (2018).
Google Scholar
Dotter, A. et al. The Dartmouth Stellar Evolution Database. Astrophys. J. Suppl. Ser. 178, 89–101 (2008).
Google Scholar
Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).
Google Scholar
Weiss, A. & Schlattl, H. GARSTEC—the Garching Stellar Evolution Code: the direct descendant of the legendary Kippenhahn code. Astrophys. Space Sci. 316, 99–106 (2008).
Google Scholar
Goldreich, P. & Soter, S. Q in the solar system. Icarus 5, 375–389 (1966).
Google Scholar
Wu, Y. Origin of tidal dissipation in Jupiter: II. The value of Q. Astrophys. J. 635, 688–710 (2005).
Essick, R. & Weinberg, N. N. Orbital decay of hot Jupiters due to nonlinear tidal dissipation within solar-type hosts. Astrophys. J. 816, 18 (2016).
Google Scholar
Fortney, J. J., Dawson, R. I. & Komacek, T. D. Hot Jupiters: origins, structure, atmospheres. J. Geophys. Res. Planets 126, e2020JE006629 (2021).
Google Scholar
Spiegel, D. S., Burrows, A. & Milsom, J. A. The deuterium-burning mass limit for brown dwarfs and giant planets. Astrophys. J. 727, 57 (2011).
Google Scholar
Belokurov, V. et al. Unresolved stellar companions with Gaia DR2 astrometry. Mon. Not. R. Astron. Soc. 496, 1922–1940 (2020).
Google Scholar
Penoyre, Z., Belokurov, V., Evans, N. W., Everall, A. & Koposov, S. E. Binary deviations from single object astrometry. Mon. Not. R. Astron. Soc. 495, 321–337 (2020).
Google Scholar
Rybizki, J. et al. A classifier for spurious astrometric solutions in Gaia eDR3. Mon. Not. R. Astron. Soc. 510, 2597–2616 (2022).
Google Scholar
Penoyre, Z., Belokurov, V. & Evans, N. W. Astrometric identification of nearby binary stars – I. Predicted astrometric signals. Mon. Not. R. Astron. Soc. 513, 2437–2456 (2022).
Google Scholar
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).
Google Scholar
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. Ser. 220, 15 (2015).
Google Scholar
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234, 34 (2018).
Google Scholar
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser. 243, 10 (2019).
Google Scholar
Holman, M. J. & Wiegert, P. A. Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999).
Google Scholar
Rappaport, S., Verbunt, F. & Joss, P. C. A new technique for calculations of binary stellar evolution, with application to magnetic braking. Astrophys. J. 275, 713–731 (1983).
Google Scholar
Tauris, T. M. & van den Heuvel, E. P. J. in Compact Stellar X-ray Sources (eds Lewin, W. & van der Klis, M.) 623–666 (Cambridge Univ. Press, 2006).
Raghavan, D. et al. A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. 190, 1–42 (2010).
Google Scholar
Moe, M. & Di Stefano, R. Mind your Ps and Qs: the interrelation between period (P) and mass-ratio (Q) distributions of binary stars. Astrophys. J. Suppl. Ser. 230, 15 (2017).
Google Scholar
Chen, X., Maxted, P. F. L., Li, J. & Han, Z. The formation of EL CVn-type binaries. Mon. Not. R. Astron. Soc. 467, 1874–1889 (2017).
Google Scholar
Miller, G. E. & Scalo, J. M. The initial mass function and stellar birthrate in the solar neighborhood.J. Astophys. Suppl. Ser. 41, 513–547 (1979).
Google Scholar
Eggleton, P. P., Fitchett, M. J. & Tout, C. A. The distribution of visual binaries with two bright components. Astrophys. J. 347, 998–1011 (1989).
Google Scholar
Sneden, C., Brown, J., Dutchover, E. Jr & Lambert, D. A search for lithium-rich giant stars. Bull. Am. Astron. Soc. 16, 490 (1984).
Yan, H.-L. et al. The nature of the lithium enrichment in the most Li-rich giant star. Nat. Astron. 2, 790–795 (2018).
Google Scholar
Rui, N. Z. & Fuller, J. Asteroseismic fingerprints of stellar mergers. Mon. Not. R. Astron. Soc. 508, 1618–1631 (2021).
Google Scholar
Kochanek, C. S., Adams, S. M. & Belczynski, K. Stellar mergers are common. Mon. Not. R. Astron. Soc. 443, 1319–1328 (2014).
Google Scholar
Price-Whelan, A. M. et al. Close binary companions to APOGEE DR16 stars: 20,000 binary-star systems across the color–magnitude diagram. Astrophys. J. 895, 2 (2020).
Google Scholar
Reffert, S. Compilation of Discoveries of Substellar Companions around Giant Stars (Heidelberg Univ., accessed 22 February 2023); https://www.lsw.uni-heidelberg.de/users/sreffert/giantplanets/giantplanets.php.
Ivanova, N. et al. Common envelope evolution: where we stand and how we can move forward. Astron. Astrophys. Rev. 21, 59 (2013).
Google Scholar
Scherbak, P. & Fuller, J. White dwarf binaries suggest a common envelope efficiency α ~ 1/3. Mon. Not. R. Astron. Soc. 518, 3966–3984 (2023).
Google Scholar
Eggleton, P. P. Approximations to the radii of Roche lobes. Astrophys. J. 268, 368–369 (1983).
Google Scholar