Strange India All Strange Things About India and world


  • 1.

    Naylor, R. L. et al. Effect of aquaculture on world fish supplies. Nature 405, 1017–1024 (2000). This paper, the original study that motivated this 20-year retrospective Review, provides an analysis of the use of wild fish in aquafeeds and the contribution of fed aquaculture to the net balance of seafood supplies.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    FAO. Fisheries and Aquaculture Software. FishStatJ: Software for Fishery and Aquaculture Statistical Time Series http://www.fao.org/fishery/statistics/software/fishstatj/en (FAO Fisheries Division, 2019).

  • 3.

    Tacon, A. G. J. Trends in global aquaculture and aquafeed production: 2000–2017. Rev. Fish. Sci. Aquacult. 28, 43–56 (2020).

    Google Scholar 

  • 4.

    Belton, B. & Thilsted, S. H. Fisheries in transition: food and nutrition security implications for the Global South. Glob. Food Secur. 3, 59–66 (2014).

    Google Scholar 

  • 5.

    Béné, C. et al. Contribution of fisheries and aquaculture to food security and poverty reduction: assessing the current evidence. World Dev. 79, 177–196 (2016).

    Google Scholar 

  • 6.

    Thilsted, S. H. et al. Sustaining healthy diets: The role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 61, 126–131 (2016).

    Google Scholar 

  • 7.

    Belton, B. et al. Farming fish in the sea will not nourish the world. Nat. Commun. 11, 5804 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Stevens, J. R., Newton, R. W., Tlusty, M. & Little, D. C. The rise of aquaculture by-products: increasing food production, value, and sustainability through strategic utilisation. Mar. Policy 90, 115–124 (2018).

    Google Scholar 

  • 9.

    Edwards, P., Zhang, W., Belton, B. & Little, D. C. Misunderstandings, myths and mantras in aquaculture: its contribution to world food supplies has been systematically over reported. Mar. Policy 106, 103547 (2019). This study provides a critical assessment of how aquaculture and fisheries compare to terrestrial livestock in terms of edible and live-weight production and growth in recent decades.

    Google Scholar 

  • 10.

    Metian, M., Troell, M., Christensen, V., Steenbeek, J. & Pouil, S. Mapping diversity of species in global aquaculture. Rev. Aquacult. 12, 1090–1100 (2020).

    Google Scholar 

  • 11.

    Bush, S. R., Belton, B., Little, D. C. & Islam, M. S. Emerging trends in aquaculture value chain research. Aquaculture 498, 428–434 (2019).

    Google Scholar 

  • 12.

    Cao, L. et al. China’s aquaculture and the world’s wild fisheries. Science 347, 133–135 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Fabinyi, M. & Liu, N. The social context of the Chinese food system: an ethnographic study of the Beijing seafood market. Sustainability 8, 244 (2016).

    Google Scholar 

  • 14.

    Crona, B. et al. China at a crossroads: an analysis of China’s changing seafood production and consumption. One Earth 3, 32–44 (2020).

    Google Scholar 

  • 15.

    Garlock, T. et al. A global blue revolution: aquaculture growth across regions, species, and countries. Rev. Fish. Sci. Aquacult. 28, 107–116 (2020).

    Google Scholar 

  • 16.

    Adeleke, B., Robertson-Andersson, D., Moodley, G. & Taylor, S. Aquaculture in Africa: a comparative review of Egypt, Nigeria and Uganda vis-à-vis South Africa. Rev. Fish. Sci. Aquacult. https://doi.org/10.1080/23308249.2020.1795615 (2020).

  • 17.

    FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action http://www.fao.org/documents/card/en/c/ca9229en (FAO, 2020).

  • 18.

    WorldFish. Addressing COVID-19 Impacts on Fish and Aquatic Food Systems https://mailchi.mp/worldfishcenter/covid-response (WorldFish, 2020).

  • 19.

    Little, D. C., Newton, R. W. & Beveridge, M. C. M. Aquaculture: a rapidly growing and significant source of sustainable food? Status, transitions and potential. Proc. Nutr. Soc. 75, 274–286 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Pieterse, J. N. Multipolar Globalization: Emerging Economies and Development (Routledge, 2017).

  • 21.

    Belton, B., Bush, S. R. & Little, D. C. Not just for the wealthy: rethinking farmed fish consumption in the Global South. Glob. Food Secur. 16, 85–92 (2018). This paper challenges the emerging view that aquaculture primarily benefits wealthy populations and shows that aquaculture improves food security for top producing low- and middle-income countries.

    Google Scholar 

  • 22.

    Belton, B. & Bush, S. R. Beyond net deficits: new priorities for an aquacultural geography. Geogr. J. 180, 3–14 (2014).

    Google Scholar 

  • 23.

    Wang, Q. et al. Paradigm changes in freshwater aquaculture practices in China: moving towards achieving environmental integrity and sustainability. Ambio 47, 410–426 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Hernandez, R. et al. The “quiet revolution” in the aquaculture value chain in Bangladesh. Aquaculture 493, 456–468 (2018). This study describes the extent and importance of freshwater aquaculture in stimulating societal benefits through employment generated by values chains in Bangladesh.

    Google Scholar 

  • 25.

    Little, D. C. & Bunting, S. W. in Emerging Technologies for Promoting Food Security: Overcoming the World Food Crisis (ed. Madramootoo, C.) 93–113 (Elsevier, 2016).

  • 26.

    Belton, B., Padiyar, A., Ravibabu, G. & Gopal Rao, K. Boom and bust in Andhra Pradesh: development and transformation in India’s domestic aquaculture value chain. Aquaculture 470, 196–206 (2017).

    Google Scholar 

  • 27.

    Belton, B. & Filipski, M. Rural transformation in central Myanmar: by how much, and for whom? J. Rural Stud. 67, 166–176 (2019).

    Google Scholar 

  • 28.

    Belton, B. & Little, D. The development of aquaculture in central Thailand: domestic demand versus export-led production. J. Agrar. Change 8, 123–143 (2008).

    Google Scholar 

  • 29.

    Loc, V. T. T., Bush, S. R., Sinh, L. X. & Khiem, N. T. High and low value fish chains in the Mekong Delta: challenges for livelihoods and governance. Environ. Dev. Sustain. 12, 889–908 (2010).

    Google Scholar 

  • 30.

    Fluet-Chouinard, E., Funge-Smith, S. & McIntyre, P. B. Global hidden harvest of freshwater fish revealed by household surveys. Proc. Natl Acad. Sci. USA 115, 7623–7628 (2018).

    CAS 

    Google Scholar 

  • 31.

    Belton, B. & Little, D. C. in World Small-Scale Fisheries: Contemporary Visions (ed. Chuenpagdee, R.) 151–170 (Eburon, 2011).

  • 32.

    Toufique, K. A. & Belton, B. Is aquaculture pro-poor? Empirical evidence of impacts on fish consumption in Bangladesh. World Dev. 64, 609–620 (2014).

    Google Scholar 

  • 33.

    Filipski, M. & Belton, B. Give a man a fishpond: modeling the impacts of aquaculture in the rural economy. World Dev. 110, 205–223 (2018).

    Google Scholar 

  • 34.

    Beveridge, M. C. M. et al. Meeting the food and nutrition needs of the poor: the role of fish and the opportunities and challenges emerging from the rise of aquaculture. J. Fish Biol. 83, 1067–1084 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Kaminski, A. M. et al. A review of inclusive business models and their application in aquaculture development. Rev. Aquacult. 12, 1881–1902 (2020).

    Google Scholar 

  • 36.

    Bestari, N., Edwards, P., Katon, B., Morales, A. & Pullin, R. An Evaluation of Small Scale Freshwater Rural Aquaculture Development for Poverty Reduction. Case Study 6: Tilapia Cage Farming in Lake Taal, Batangas, Philippines Report No. 091704, 110–127 https://www.adb.org/publications/evaluation-small-scale-freshwater-rural-aquaculture-development-poverty-reduction (Asian Development Bank, 2005).

  • 37.

    Fakhrudin, M., Subehi, L., Jasalesmana, T. & Dianto, A. Dissolved oxygen and temperature stratification analysis for early warning system development in preventing mass mortality of fish in lake Maninjau, West Sumatera – Indonesia. IOP Conf. Ser. Earth Environ. Sci. 380, 012002 (2019).

    Google Scholar 

  • 38.

    Ponte, S., Kelling, I., Jespersen, K. S. & Kruijssen, F. The blue revolution in Asia: upgrading and governance in aquaculture value chains. World Dev. 64, 52–64 (2014).

    Google Scholar 

  • 39.

    Lebel, L., Lebel, P. & Chuah, C. J. Water use by inland aquaculture in Thailand: stakeholder perceptions, scientific evidence, and public policy. Environ. Manage. 63, 554–563 (2019).

    ADS 

    Google Scholar 

  • 40.

    Wang, J., Beusen, A. H. W., Liu, X. & Bouwman, A. F. Aquaculture production is a large, spatially concentrated source of nutrients in Chinese freshwater and coastal seas. Environ. Sci. Technol. 54, 1464–1474 (2020). This paper provides the first model-based estimate of the scale of total nutrient release from aquaculture to the freshwater and marine environment in China.

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Wu, Y., Shan, L., Guo, Z. & Peng, Y. Cultivated land protection policies in China facing 2030: dynamic balance system versus basic farmland zoning. Habitat Int. 69, 126–138 (2017).

    Google Scholar 

  • 42.

    Brown, T. W., Chappell, J. A. & Boyd, C. E. A commercial-scale, in-pond raceway system for Ictalurid catfish production. Aquacult. Eng. 44, 72–79 (2011).

    Google Scholar 

  • 43.

    Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 13257–13263 (2014). This study assesses the resilience of the aquaculture sector using a portfolio approach that focuses on production and feed links between terrestrial and marine systems.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Leadbitter, D. Driving Change in South East Asian Trawl Fisheries, Fishmeal Supply and Aquafeed https://www.iffo.com/system/files/downloads/Full%20Report%20on%20South%20East%20Asia.pdf (IFFO, 2019).

  • 45.

    Arthur, R. I. et al. Assessing impacts of introduced aquaculture species on native fish communities: Nile tilapia and major carps in SE Asian freshwaters. Aquaculture 299, 81–88 (2010).

    Google Scholar 

  • 46.

    Henriksson, P. J. G., Belton, B., Jahan, K. M.-E. & Rico, A. Measuring the potential for sustainable intensification of aquaculture in Bangladesh using life cycle assessment. Proc. Natl Acad. Sci. USA 115, 2958–2963 (2018).

    CAS 

    Google Scholar 

  • 47.

    Green, K. Fishmeal and Fish Oil Facts and Figures. March 2018 https://www.seafish.org/document/?id=1b08b6d5-75d9-4179-9094-840195ceee4b (SeaFish, 2018).

  • 48.

    Pauly, D., Zeller, D. & Palomares, M. L. D. Sea Around Us Concepts, Design and Data http://www.seaaroundus.org/ (2020).

  • 49.

    Davis, D. A. Feed and Feeding Practices in Aquaculture (Woodhead, 2015).

  • 50.

    Bachis, E. Fishmeal and fish oil: a summary of global trends. 57th IFFO Annual Conference https://www.iffo.com/blog/day-2-summary-57th-iffo-annual-conference  (2017).

  • 51.

    Auchterlonie, N. A. The continuing importance of fishmeal and fish oil in aquafeeds. https://www.iffo.com/system/files/downloads/AquaFarm%20Feb18%20NA.pdf (2018).

  • 52.

    Shepherd, J. Responsible marine ingredients for agriculture. https://www.iffo.com/system/files/downloads/JS%20IFFO%20presentation%20for%20GOAL.pdf (2011).

  • 53.

    Péron, G., François Mittaine, J. & Le Gallic, B. Where do fishmeal and fish oil products come from? An analysis of the conversion ratios in the global fishmeal industry. Mar. Policy 34, 815–820 (2010).

    Google Scholar 

  • 54.

    National Research Council. Nutrient Requirements of Fish and Shrimp (The National Academies Press, 2011).

  • 55.

    Ytrestøyl, T., Aas, T. S. & Åsgård, T. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture 448, 365–374 (2015).

    Google Scholar 

  • 56.

    Kok, B. et al. Fish as feed: using economic allocation to quantify the fish in: fish out ratio of major fed aquaculture species. Fish Fish. 528, 735474 (2020).

    CAS 

    Google Scholar 

  • 57.

    Zhang, W. et al. Fishing for feed in China: facts, impacts and implications. Fish Fish. 21, 47–62 (2020).This study provides field-based evidence on the extent of feed-grade, non-targeted fish catch in China for aquaculture feeds and its implications for marine food webs.

    Google Scholar 

  • 58.

    Krogdahl, Å., Penn, M., Thorsen, J., Refstie, S. & Bakke, A. M. Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquacult. Res. 41, 333–344 (2010).

    CAS 

    Google Scholar 

  • 59.

    Naylor, R. L. et al. Feeding aquaculture in an era of finite resources. Proc. Natl Acad. Sci. USA 106, 15103–15110 (2009). This perspective describes advances in fish nutrition with an emphasis on alternative protein sources to replace fishmeal and strategies to reduce fish oil levels in aquafeed.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Hua, K. et al. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1, 316–329 (2019).

    Google Scholar 

  • 61.

    Drew, M. D., Borgeson, T. L. & Thiessen, D. L. A review of processing of feed ingredients to enhance diet digestibility in finfish. Anim. Feed Sci. Technol. 138, 118–136 (2007). This paper reviews the technologies used to improve the nutritional quality of plant protein concentrates and other alternative feed ingredients to support efficient fish growth when included in fish feeds.

    CAS 

    Google Scholar 

  • 62.

    Betancor, M. B. et al. A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish. Sci. Rep. 5, 8104 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Sprague, M., Dick, J. R. & Tocher, D. R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 6, 21892 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Turchini, G. M., Wing-Keong, N. & Tocher, D. R. Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds (CRC, 2010). A thorough review of fish oil replacement in fish feeds.

  • 65.

    Martin, S. A. M. & Król, E. Nutrigenomics and immune function in fish: new insights from omics technologies. Dev. Comp. Immunol. 75, 86–98 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Simó-Mirabet, P. et al. Impact of low fish meal and fish oil diets on the performance, sex steroid profile and male–female sex reversal of gilthead sea bream (Sparus aurata) over a three-year production cycle. Aquaculture 490, 64–74 (2018).

    Google Scholar 

  • 67.

    Caballero-Solares, A. et al. Changes in the liver transcriptome of farmed Atlantic salmon (Salmo salar) fed experimental diets based on terrestrial alternatives to fish meal and fish oil. BMC Genomics 19, 796 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Gjedrem, T. & Rye, M. Selection response in fish and shellfish: a review. Rev. Aquacult. 10, 168–179 (2018).

    Google Scholar 

  • 69.

    de Verdal, H. et al. Improving feed efficiency in fish using selective breeding: a review. Rev. Aquacult. 10, 833–851 (2018).

    Google Scholar 

  • 70.

    Overturf, K., Barrows, F. T. & Hardy, R. W. Effect and interaction of rainbow trout strain (Oncorhynchus mykiss) and diet type on growth and nutrient retention. Aquacult. Res. 44, 604–611 (2013).

    CAS 

    Google Scholar 

  • 71.

    Brezas, A. & Hardy, R. W. Improved performance of a rainbow trout selected strain is associated with protein digestion rates and synchronization of amino acid absorption. Sci. Rep. 10, 4678 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Little, D. C. et al. Sustainable intensification of aquaculture value chains between Asia and Europe: a framework for understanding impacts and challenges. Aquaculture 493, 338–354 (2018).

    Google Scholar 

  • 73.

    Newton, R. W. & Little, D. C. Mapping the impacts of farmed Scottish salmon from a life cycle perspective. Int. J. Life Cycle Assess. 23, 1018–1029 (2018).

    CAS 

    Google Scholar 

  • 74.

    Malcorps, W. et al. The sustainability conundrum of fishmeal substitution by plant ingredients in shrimp feeds. Sustainability 11, 1212 (2019).

    Google Scholar 

  • 75.

    Pelletier, N., Klinger, D. H., Sims, N. A., Yoshioka, J. R. & Kittinger, J. N. Nutritional attributes, substitutability, scalability, and environmental intensity of an illustrative subset of current and future protein sources for aquaculture feeds: joint consideration of potential synergies and trade-offs. Environ. Sci. Technol. 52, 5532–5544 (2018). This paper provides a perspective on the shift from wild fish to terrestrial crop-based ingredients in aquafeeds.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Aas, T. S., Ytrestøyl, T. & Åsgård, T. Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: An update for 2016. Aquacult. Rep. 15, 100216 (2019).

    Google Scholar 

  • 77.

    Hansen, L. The weak sustainability of the salmon feed transition in Norway – a bioeconomic case study. Front. Mar. Sci. 6, 764 (2019).

    Google Scholar 

  • 78.

    Klinger, D. & Naylor, R. Searching for solutions in aquaculture: charting a sustainable course. Annu. Rev. Environ. Resour. 37, 247–276 (2012).

    Google Scholar 

  • 79.

    Wan, A. H. L., Davies, S. J., Soler-Vila, A., Fitzgerald, R. & Johnson, M. P. Macroalgae as a sustainable aquafeed ingredient. Rev. Aquacult. 11, 458–492 (2019).

    Google Scholar 

  • 80.

    El Abbadi, S. H. & Criddle, C. S. Engineering the dark food chain. Environ. Sci. Technol. 53, 2273–2287 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 1, 301–308 (2020).

    Google Scholar 

  • 82.

    Shumway, S. E. Shellfish Aquaculture and the Environment (Wiley-Blackwell, 2011).This book presents a comprehensive review of shellfish aquaculture–environment interactions.

  • 83.

    Buschmann, A. H. et al. Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 52, 391–406 (2017). This paper describes the status and uses of capture and culture for seaweed production in the last decade, highlighting emerging trends and future avenues of research such as new pharmaceutical uses and carbon sequestration.

    Google Scholar 

  • 84.

    Smaal, A. C., Ferreira, J. G., Grant, J., Petersen, J. K. & Strand, Ø. Goods and Services of Marine Bivalves (Springer, 2019). This volume presents a comprehensive review of ecosystem services provided by marine bivalve molluscs.

  • 85.

    Weitzman, J. Applying the ecosystem services concept to aquaculture: a review of approaches, definitions, and uses. Ecosyst. Serv. 35, 194–206 (2019).

    Google Scholar 

  • 86.

    Costa-Pierce, B. A. Ecological Aquaculture: The Evolution of the Blue Revolution (Wiley-Blackwell, 2002).

  • 87.

    Gentry, R. R. et al. Exploring the potential for marine aquaculture to contribute to ecosystem services. Rev. Aquacult. 12, 499–512 (2020).

    Google Scholar 

  • 88.

    Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    van der Schatte Olivier, A. et al. A global review of the ecosystem services provided by bivalve aquaculture. Rev. Aquacult. 12, 3–25 (2020).

    Google Scholar 

  • 90.

    Aubin, J., Fontaine, C., Callier, M. & Roque d’orbcastel, E. Blue mussel (Mytilus edulis) bouchot culture in Mont-St Michel Bay: potential mitigation effects on climate change and eutrophication. Int. J. Life Cycle Assess. 23, 1030–1041 (2018).

    CAS 

    Google Scholar 

  • 91.

    Filgueira, R. et al. An integrated ecosystem approach for assessing the potential role of cultivated bivalve shells as part of the carbon trading system. Mar. Ecol. Prog. Ser. 518, 281–287 (2015).

    ADS 

    Google Scholar 

  • 92.

    Rosa, M., Ward, J. E. & Shumway, S. E. Selective capture and ingestion of particles by suspension-feeding bivalve molluscs: a review. J. Shellfish Res. 37, 727–746 (2018).

    Google Scholar 

  • 93.

    Wilberg, M. J., Livings, M. E., Barkman, J. S., Morris, B. T. & Robinson, J. M. Overfishing, disease, habitat loss, and potential extirpation of oysters in upper Chesapeake Bay. Mar. Ecol. Prog. Ser. 436, 131–144 (2011).

    ADS 

    Google Scholar 

  • 94.

    Lindahl, O. et al. Improving marine water quality by mussel farming: a profitable solution for Swedish society. Ambio 34, 131–138 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 95.

    Parker, M. & Bricker, S. Sustainable oyster aquaculture, water quality improvement and ecosystem service value potential in Maryland, Chesapeake Bay. J. Shellfish Res. 39, 269–281 (2020).

    Google Scholar 

  • 96.

    Lafferty, K. D. et al. Infectious diseases affect marine fisheries and aquaculture economics. Annu. Rev. Mar. Sci. 7, 471–496 (2015).

    ADS 

    Google Scholar 

  • 97.

    Fox, M. et al. Preventing and mitigating farmed bivalve disease: a Northern Ireland case study. Aquacult. Int. 28, 2397–2417 (2020).

    Google Scholar 

  • 98.

    Shumway, S. E., Burkholder, J. M. & Morton, S. L. (eds) Harmful Algal Blooms: A Compendium Desk Reference (John Wiley & Sons, 2018). A comprehensive review of the causes, consequences, and dynamics of harmful algal blooms.

  • 99.

    Liu, H. & Su, J. Vulnerability of China’s nearshore ecosystems under intensive mariculture development. Environ. Sci. Pollut. Res. Int. 24, 8957–8966 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Wartenberg, R. et al. The impacts of suspended mariculture on coastal zones in China and the scope for integrated multi-trophic aquaculture. Ecosyst. Health Sustain. 3, 1340268 (2017).

    Google Scholar 

  • 101.

    Ferreira, J. G., Hawkins, A. J. S. & Bricker, S. B. Management of productivity, environmental effects and profitability of shellfish aquaculture — the Farm Aquaculture Resource Management (FARM) model. Aquaculture 264, 160–174 (2007).

    Google Scholar 

  • 102.

    Ferreira, J. G. et al. Integrated assessment of ecosystem-scale carrying capacity in shellfish growing areas. Aquaculture 275, 138–151 (2008).

    Google Scholar 

  • 103.

    Ferreira, J. G. et al. Ecological carrying capacity for shellfish aquaculture—sustainability of naturally occurring filter-feeders and cultivated bivalves. J. Shellfish Res. 37, 709–726 (2018).

    Google Scholar 

  • 104.

    Lavaud, R., Guyondet, T., Filgueira, R., Tremblay, R. & Comeau, L. A. Modelling bivalve culture – eutrophication interactions in shallow coastal ecosystems. Mar. Pollut. Bull. 157, 111282 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Tucker, C. & Hargraeves, J. A. Environmental Best Management Practices for Aquaculture (Wiley-Blackwell, 2008).

  • 106.

    Barbier, M. et al. PEGASUS – Phycomorph European Guidelines for a Sustainable Aquaculture of Seaweeds. COST Action FA1406 (eds Barbier, M. & Charrier, B.) https://doi.org/10.21411/2c3w-yc73 (COST, 2019).

  • 107.

    Dillehay, T. D. et al. Monte Verde: seaweed, food, medicine, and the peopling of South America. Science 320, 784–786 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 108.

    Porse, H. & Rudolph, B. The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J. Appl. Phycol. 29, 2187–2200 (2017).

    Google Scholar 

  • 109.

    Shannon, E. & Abu-Ghannam, N. Seaweeds as nutraceuticals for health and nutrition. Phycologia 58, 563–577 (2019).

    CAS 

    Google Scholar 

  • 110.

    Wells, M. L. et al. Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol. 29, 949–982 (2017). A review and critical analysis of the actual and purported benefits of seaweed for human nutrition.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 111.

    Mouritsen, O. G., Rhatigan, P. & Pérez-Lloréns, J. L. The rise of seaweed gastronomy: phycogastronomy. Bot. Mar. 62, 195–209 (2019).

    Google Scholar 

  • 112.

    Holdt, S. L. & Kraan, S. Bioactive compounds in seaweed: functional food applications and legislation. J. Appl. Phycol. 23, 543–597 (2011).

    CAS 

    Google Scholar 

  • 113.

    Li, X. et al. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim. Prod. Sci. 58, 681–688 (2016).

    Google Scholar 

  • 114.

    Chopin, T. & Tacon, A. G. J. Importance of seaweeds and extractive species in global aquaculture production. Rev. Fish. Sci. Aquacult. https://doi.org/10.1080/23308249.2020.1810626 (2020). This paper provides a clear and comprehensive assessment of global seaweed aquaculture and shows the relevance of integrated multi-trophic aquaculture and other applications.

  • 115.

    Hurd, C. L., Harrison, P. J., Bischof, K. & Lobban, C. S. Seaweed Ecology and Physiology 2nd edn (Cambridge Univ. Press, 2014).

  • 116.

    Duarte, C. M., Wu, J., Xiao, X., Bruhn, A. & Krause-Jensen, D. Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci. 4, 100 (2017).

    Google Scholar 

  • 117.

    Krause-Jensen, D. et al. Sequestration of macroalgal carbon: the elephant in the blue carbon room. Biol. Lett. 14, 20180236 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 118.

    Alleway, H. K. et al. The ecosystem services of marine aquaculture: valuing benefits to people and nature. Bioscience 69, 59–68 (2019).

    Google Scholar 

  • 119.

    Yang, Y. et al. Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Res. 9, 236–244 (2015).

    Google Scholar 

  • 120.

    Xiao, X. et al. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Sci. Rep. 7, 46613 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 121.

    Kim, G. H., Moon, K.-H., Kim, J.-Y., Shim, J. & Klochkova, T. A. A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact. Algae 29, 249–265 (2014).

    Google Scholar 

  • 122.

    Hurtado, A. Q., Neish, I. C. & Critchley, A. T. Phyconomy: the extensive cultivation of seaweeds, their sustainability and economic value, with particular reference to important lessons to be learned and transferred from the practice of eucheumatoid farming. Phycologia 58, 472–483 (2019).

    Google Scholar 

  • 123.

    Zollmann, M. et al. Green technology in green macroalgal biorefineries. Phycologia 58, 516–534 (2019).

    Google Scholar 

  • 124.

    Doumeizel, V. et al. Seaweed Revolution: A Manifesto for a Sustainable Future. https://ungc-communications-assets.s3.amazonaws.com/docs/publications/The-Seaweed-Manifesto.pdf (UN Global Compact and Lloyd’s Register Foundation, 2020).

  • 125.

    Fröcklin, S., de la Torre-Castro, M., Lindström, L., Jiddawi, N. S. & Msuya, F. E. Seaweed mariculture as a development project in Zanzibar, East Africa: a price too high to pay? Aquaculture 356–357, 30–39 (2012).

    Google Scholar 

  • 126.

    van den Burg, S. W. K., Dagevos, H. & Helmes, R. J. K. Towards sustainable European seaweed value chains: a triple P perspective. ICES J. Mar. Sci. fsz183 (2019).

  • 127.

    Herbeck, L. S., Krumme, U., Andersen, T. J. & Jennejahn, T. C. Decadal trends in mangrove and pond aquaculture cover on Hainan (China) since 1966: mangrove loss, fragmentation and associated biogeochemical changes. Estuar. Coast. Shelf Sci. 233, 106531 (2020).

    CAS 

    Google Scholar 

  • 128.

    Nguyen, H. Q. et al. Socio-ecological resilience of mangrove-shrimp models under various threats exacerbated from salinity intrusion in coastal area of the Vietnamese Mekong Delta. Int. J. Sustain. Dev. World Ecol. 27, 638–651 (2020).

    Google Scholar 

  • 129.

    Reid, G. K. et al. Climate change and aquaculture: considering adaptation potential. Aquacult. Environ. Interact. 11, 603-624 (2019). This paper reviews potential adaptation strategies for reducing climate-induced impacts on the aquaculture sector. 

    Google Scholar 

  • 130.

    Stentiford, G. D. et al. Disease will limit future food supply from the global crustacean fishery and aquaculture sectors. J. Invertebr. Pathol. 110, 141–157 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 131.

    Stentiford, G. D. et al. New paradigms to help solve the global aquaculture disease crisis. PLoS Pathog. 13, e1006160 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 132.

    Elaswad, A. & Dunham, R. Disease reduction in aquaculture with genetic and genomic technology: current and future approaches. Rev. Aquacult. 10, 876–898 (2018).

    Google Scholar 

  • 133.

    Pernet, F., Lupo, C., Bacher, C. & Whittington, R. J. Infectious diseases in oyster aquaculture require a new integrated approach. Phil. Trans. R. Soc. Lond. B 371, 20150213 (2016).

    Google Scholar 

  • 134.

    Austin, B. & Newaj-Fyzul, A. (eds) Diagnosis and Control of Diseases of Fish and Shellfish (John Wiley & Sons, 2017).

  • 135.

    Luis, A. I. S., Campos, E. V. R., de Oliveira, J. L. & Fraceto, L. F. Trends in aquaculture sciences: from now to use of nanotechnology for disease control. Rev. Aquacult. 11, 119–132 (2019).

    Google Scholar 

  • 136.

    Flegel, T. W. A future vision for disease control in shrimp aquaculture. J. World Aquacult. Soc. 50, 249–266 (2019).

    Google Scholar 

  • 137.

    Leung, P., Lee, C. S. & O’Bryen, P. J. Species and System Selection for Sustainable Aquaculture (John Wiley & Sons, 2008). This paper presents a comprehensive review of the factors that affect species and system utilization in global aquaculture.

  • 138.

    Shinn, A. P. et al. Asian shrimp production and the economic costs of disease. Asian Fish. Sci. 31S, 29–58 (2018).

    Google Scholar 

  • 139.

    You, W. & Hedgecock, D. Boom-and-bust production cycles in animal seafood aquaculture. Rev. Aquacult. 11, 1045–1060 (2019).

    Google Scholar 

  • 140.

    Cabello, F. C. et al. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 15, 1917–1942 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 141.

    Cabello, F. C. & Godfrey, H. P. Salmon aquaculture, Piscirickettsia salmonis virulence, and One Health: dealing with harmful synergies between heavy antimicrobial use and piscine and human health. Aquaculture 507, 451–456 (2019).

    Google Scholar 

  • 142.

    Rico, A. et al. Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: a critical review. Rev. Aquacult. 4, 75–93 (2012).

    Google Scholar 

  • 143.

    Henriksson, P. J. G. et al. Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustain. Sci. 13, 1105–1120 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 144.

    Lulijwa, R., Rupia, E. J. & Alfaro, A. C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Rev. Aquacult. 12, 640–663 (2020).

    Google Scholar 

  • 145.

    Kumar, G. & Engle, C. R. Technological advances that led to growth of shrimp, salmon, and tilapia farming. Rev. Fish. Sci. Aquacult. 24, 136–152 (2016).

    Google Scholar 

  • 146.

    Brudeseth, B. E. et al. Status and future perspectives of vaccines for industrialised fin-fish farming. Fish Shellfish Immunol. 35, 1759–1768 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 147.

    Plant, K. P. & Lapatra, S. E. Advances in fish vaccine delivery. Dev. Comp. Immunol. 35, 1256–1262 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 148.

    Boopathy, R. in Sustainable Aquaculture (eds Hai, F. I et al.) 301–322 (Springer, 2018).

  • 149.

    Adams, A. Progress, challenges and opportunities in fish vaccine development. Fish Shellfish Immunol. 90, 210–214 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 150.

    Abolofia, J., Asche, F. & Wilen, J. E. The cost of lice: quantifying the impacts of parasitic sea lice on farmed salmon. Mar. Resour. Econ. 32, 329–349 (2017).

    Google Scholar 

  • 151.

    Tangprasittipap, A. et al. The microsporidian Enterocytozoon hepatopenaei is not the cause of white feces syndrome in whiteleg shrimp Penaeus (Litopenaeus) vannamei. BMC Vet. Res. 9, 139 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 152.

    Kibenge, F. S. B. Emerging viruses in aquaculture. Curr. Opin. Virol. 34, 97–103 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 153.

    Santos, H. M. et al. Diagnosis and potential treatments for acute hepatopancreatic necrosis disease (AHPND): a review. Aquacult. Int. 28, 169–185 (2020).

    Google Scholar 

  • 154.

    MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M. & Brownstein, J. S. Antibiotic resistance increases with local temperature. Nat. Clim. Change 8, 510–514 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 155.

    Reverter, M. et al. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 11, 1870 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 156.

    Reid, G. K. et al. Climate change and aquaculture: considering biological response and resources. Aquacult. Environ. Interact. 11, 569–602 (2019). This paper reviews the science on climate impacts on the aquaculture sector. 

    Google Scholar 

  • 157.

    Subasinghe, R. P., Delamare-Deboutteville, J., Mohan, C. V. & Phillips, M. J. Vulnerabilities in aquatic animal production. Rev. Sci. Tech. 38, 423–436 (2019).

    CAS 

    Google Scholar 

  • 158.

    Matsuyama, Y. & Shumway, S. in New Technologies in Aquaculture: Improving Production Efficiency, Quality and Environmental Management(eds Burnell, G. & Allan, G.) 580–609 (Elsevier, 2009).

  • 159.

    Díaz, P. A. et al. Impacts of harmful algal blooms on the aquaculture industry: Chile as a case study. Perspect. Phycol. 6, 39–50 (2019).

    Google Scholar 

  • 160.

    Barange, M. et al. Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options. FAO Fisheries and Aquaculture Technical Paper 627 http://www.fao.org/3/i9705en/i9705en.pdf (FAO, 2018).

  • 161.

    Barton, A. et al. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 28, 146–159 (2015).

    Google Scholar 

  • 162.

    Dupont, S., Dorey, N. & Thorndyke, M. What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuar. Coast. Shelf Sci. 89, 182–185 (2010).

    ADS 

    Google Scholar 

  • 163.

    Burge, C. A. et al. Climate change influences on marine infectious diseases: implications for management and society. Annu. Rev. Mar. Sci. 6, 249–277 (2014).

    ADS 

    Google Scholar 

  • 164.

    Wells, M. L. et al. Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49, 68–93 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 165.

    Handisyde, N., Telfer, T. C. & Ross, L. G. Vulnerability of aquaculture-related livelihoods to changing climate at the global scale. Fish Fish. 18, 466–488 (2017).

    Google Scholar 

  • 166.

    Klinger, D. H., Levin, S. A. & Watson, J. R. The growth of finfish in global open-ocean aquaculture under climate change. Proc. R. Soc. B 284, 20170834 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 167.

    Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2, 1745–1750 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 168.

    Ellis, R. P., Urbina, M. A. & Wilson, R. W. Lessons from two high CO2 worlds – future oceans and intensive aquaculture. Glob. Change Biol. 23, 2141–2148 (2017).

    ADS 

    Google Scholar 

  • 169.

    Brugère, C., Aguilar-Manjarrez, J., Beveridge, M. C. M. & Soto, D. The ecosystem approach to aquaculture 10 years on – a critical review and consideration of its future role in blue growth. Rev. Aquacult. 11, 493–514 (2019). This paper presents a critical overview of the advances and challenges of implementing the ecosystem approach to aquaculture.

    Google Scholar 

  • 170.

    Edwards, P. Aquaculture environment interactions: past, present and likely future trends. Aquaculture 447, 2–14 (2015).

    Google Scholar 

  • 171.

    Fang, J., Zhang, J., Xiao, T., Huang, D. & Liu, S. Integrated multi-trophic aquaculture (IMTA) in Sanggou Bay, China. Aquacult. Environ. Interact. 8, 201–205 (2016).

    Google Scholar 

  • 172.

    Hughes, A. D. & Black, K. D. Going beyond the search for solutions: understanding trade-offs in European integrated multi-trophic aquaculture development. Aquacult. Environ. Interact. 8, 191–199 (2016).

    Google Scholar 

  • 173.

    Neori, A. et al. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231, 361–391 (2004).

    Google Scholar 

  • 174.

    Ebeling, J. M. & Timmons, M. B. in Aquaculture Production Systems (ed. Tidwell, J.) 245–277 (Wiley-Blackwell, 2012).

  • 175.

    Badiola, M., Mendiola, D. & Bostock, J. Recirculating aquaculture systems (RAS) analysis: main issues on management and future challenges. Aquacult. Eng. 51, 26–35 (2012).

    Google Scholar 

  • 176.

    Badiola, M., Basurko, O. C., Piedrahita, R., Hundley, P. & Mendiola, D. Energy use in recirculating aquaculture systems (RAS): a review. Aquacult. Eng. 81, 57–70 (2018).

    Google Scholar 

  • 177.

    de Jong, B. Aquaculture 2.0: RAS Is Driving Change far.rabobank.com (2019).

  • 178.

    Dalsgaard, J. et al. Farming different species in RAS in Nordic countries: current status and future perspectives. Aquacult. Eng. 53, 2–13 (2013).

    Google Scholar 

  • 179.

    Cherry, D. & Mutter, R. Analysis: here’s a list of high-profile land-based aquaculture failures. IntraFish (27 November 2019).

  • 180.

    Chu, Y. I., Wang, C. M., Park, J. C. & Lader, P. F. Review of cage and containment tank designs for offshore fish farming. Aquaculture 519, 734928 (2020).

    Google Scholar 

  • 181.

    Dong, S. The development of aquaculture in the new era from a multi-dimensional perspective. Shuichan Xuebao 43, 105–115 (2019).

    Google Scholar 

  • 182.

    Thomas, L. R., Clavelle, T., Klinger, D. H. & Lester, S. E. The ecological and economic potential for offshore mariculture in the Caribbean. Nat. Sustain. 2, 62–70 (2019).

    Google Scholar 

  • 183.

    Gui, J. F., Tang, Q., Li, Z., Liu, J. & De Silva, S. Aquaculture in China: Success Stories and Modern Trends (John Wiley & Sons, 2018).

  • 184.

    Harkell, L. Chinese firm to build second offshore salmon pen in 2019. Undercurrent News (18 February 2019).

  • 185.

    Gentry, R. R. et al. Offshore aquaculture: spatial planning principles for sustainable development. Ecol. Evol. 7, 733–743 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 186.

    Ramos, J., Caetano, M., Himes-Cornell, A. & dos Santos, M. N. Stakeholders’ conceptualization of offshore aquaculture and small-scale fisheries interactions using a Bayesian approach. Ocean Coast. Manage. 138, 70–82 (2017).

    Google Scholar 

  • 187.

    Bush, S. R. & Oosterveer, P. Governing Sustainable Seafood (Routledge, 2019). This paper provides a comprehensive overview of public and private governance initiatives for aquaculture within the global sustainable seafood movement.

  • 188.

    Jonell, M., Tlusty, M., Troell, M. & Rönnbäck, P. Sustainability Certification Schemes in the Agricultural and Natural Resource Sectors (ed. Vogt, M.) 157–178 (Taylor & Francis, 2019).

  • 189.

    Roheim, C. A., Bush, S. R., Asche, F., Sanchirico, J. N. & Uchida, H. Evolution and future of the sustainable seafood market. Nat. Sustain. 1, 392–398 (2018).

    Google Scholar 

  • 190.

    Vince, J. & Haward, M. Hybrid governance of aquaculture: opportunities and challenges. J. Environ. Manage. 201, 138–144 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 191.

    Tlusty, M. F. Environmental improvement of seafood through certification and ecolabelling: theory and analysis. Fish Fish. 13, 1–13 (2012).

    Google Scholar 

  • 192.

    Bush, S. R. et al. Certify sustainable aquaculture? Science 341, 1067–1068 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 193.

    Jonell, M., Phillips, M., Rönnbäck, P. & Troell, M. Eco-certification of farmed seafood: will it make a difference? Ambio 42, 659–674 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 194.

    Tlusty, M. F. & Tausig, H. Reviewing GAA-BAP shrimp farm data to determine whether certification lessens environmental impacts. Rev. Aquacult. 7, 107–116 (2015).

    Google Scholar 

  • 195.

    Trifković, N. Certified standards and vertical coordination in aquaculture: the case of pangasius from Vietnam. Aquaculture 433, 235–246 (2014).

    Google Scholar 

  • 196.

    Bush, S. R. Understanding the potential of eco-certification in salmon and shrimp aquaculture value chains. Aquaculture 493, 376–383 (2018).

    Google Scholar 

  • 197.

    Swartz, W., Schiller, L., Sumaila, U. R. & Ota, Y. Searching for market-based sustainability pathways: challenges and opportunities for seafood certification programs in Japan. Mar. Policy 76, 185–191 (2017).

    Google Scholar 

  • 198.

    Bottema, M. J. M. Institutionalizing area-level risk management: limitations faced by the private sector in aquaculture improvement projects. Aquaculture 512, 734310 (2019).

    Google Scholar 

  • 199.

    Ferreira, J. G. & Bricker, S. in Goods and Services of Marine Bivalves (eds Smaal, A. C. et al.) 551–584 (Springer, 2019).

  • 200.

    Stuiver, M. et al. The governance of multi-use platforms at sea for energy production and aquaculture: challenges for policy makers in European Seas. Sustainability 8, 333 (2016).

    Google Scholar 

  • 201.

    Klinger, D. H., Eikeset, A. M., Davíðsdóttir, B., Winter, A.-M. & Watson, J. R. The mechanics of blue growth: management of oceanic natural resource use with multiple, interacting sectors. Mar. Policy 87, 356–362 (2018).

    Google Scholar 

  • 202.

    Krause, G. & Stead, S. M. in Aquaculture Perspective of Multi-Use Sites in the Open Ocean (eds Buck, B. H. & Langan, R.) 149–162 (Springer, 2017).

  • 203.

    BFA. The Blue Food Assessment. https://www.bluefood.earth (2020).

  • 204.

    FAO. The State of World Fisheries and Aquaculture 2018 – Meeting the Sustainable Goals http://www.fao.org/3/I9540EN/i9540en.pdf (FAO, 2018).

  • 205.

    Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.