Strange IndiaStrange India


  • Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. & Hartmann, D. H. How massive single stars end their life. Astrophys. J. 591, 288–300 (2003).

    Article 
    ADS 

    Google Scholar 

  • Sana, H. et al. Binary interaction dominates the evolution of massive stars. Science 337, 444–446 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hirai, R. & Podsiadlowski, P. Neutron stars colliding with binary companions: formation of hypervelocity stars, pulsar planets, bumpy superluminous supernovae and Thorne-Żytkow objects. Mon. Not. R. Astron. Soc. 517, 4544–4556 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gal-Yam, A. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 195–237 (Springer, 2017).

  • Nicholl, M. et al. SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. Astrophys. J. 826, 39 (2016).

    Article 
    ADS 

    Google Scholar 

  • Yan, L. et al. Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the Intermediate Palomar Transient Factory. Astrophys. J. 848, 6 (2017).

    Article 
    ADS 

    Google Scholar 

  • Hosseinzadeh, G. et al. Bumpy declining light curves are common in hydrogen-poor superluminous supernovae. Astrophys. J. 933, 14 (2022).

    Article 
    ADS 

    Google Scholar 

  • West, S. L. et al. SN 2020qlb: a hydrogen-poor superluminous supernova with well-characterized light curve undulations. Astron. Astrophys. 670, A7 (2023).

    Article 
    CAS 

    Google Scholar 

  • Chen, Z. H. et al. The hydrogen-poor superluminous supernovae from the Zwicky Transient Facility Phase I Survey. II. Light-curve modeling and characterization of undulations. Astrophys. J. 943, 42 (2023).

    Article 
    ADS 

    Google Scholar 

  • Bonanos, A. Z. & Boumis, P. Evidence for rapid variability in the optical light curve of the Type Ia SN 2014J. Astron. Astrophys. 585, A19 (2016).

    Article 
    ADS 

    Google Scholar 

  • Gal-Yam, A. et al. Supernova 2007bi as a pair-instability explosion. Nature 462, 624–627 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Matheson, T., Filippenko, A. V., Li, W., Leonard, D. C. & Shields, J. C. Optical spectroscopy of type Ib/c supernovae. Astron. J. 121, 1648–1675 (2001).

    Article 
    ADS 

    Google Scholar 

  • Mazzali, P. A. et al. Properties of two hypernovae entering the nebular phase: SN 1997ef and SN 1997dq. Astrophys. J. 614, 858–863 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Milisavljevic, D. et al. SN 2012au: a golden link between superluminous supernovae and their lower-luminosity counterparts. Astrophys. J. Lett. 770, L38 (2013).

    Article 
    ADS 

    Google Scholar 

  • Taddia, F. et al. The luminous late-time emission of the type-Ic supernova iPTF15dtg – evidence for powering from a magnetar? Astron. Astrophys. 621, A64 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zdziarski, A. A. & Svensson, R. Absorption of X-rays and gamma rays at cosmological distances. Astrophys. J. 344, 551–566 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Acharyya, A. et al. VERITAS and Fermi-LAT constraints on the gamma-ray emission from superluminous supernovae SN2015bn and SN2017egm. Astrophys. J. 945, 30 (2023).

    Article 
    ADS 

    Google Scholar 

  • Chatzopoulos, E. & Wheeler, J. C. Hydrogen-poor circumstellar shells from pulsational pair-instability supernovae with rapidly rotating progenitors. Astrophys. J. 760, 154 (2012).

    Article 
    ADS 

    Google Scholar 

  • Chevalier, R. A. & Fransson, C. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 875–937 (Springer, 2017).

  • Chen, T. W. et al. The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. Astron. Astrophys. 602, A9 (2017).

    Article 

    Google Scholar 

  • Lau, R. M. et al. Nested dust shells around the Wolf–Rayet binary WR 140 observed with JWST. Nat. Astron. 6, 1308–1316 (2022).

    Article 
    ADS 

    Google Scholar 

  • Ofek, E. O. et al. SN 2010jl: optical to hard X-ray observations reveal an explosion embedded in a ten solar mass cocoon. Astrophys. J. 781, 42 (2014).

    Article 
    ADS 

    Google Scholar 

  • Zhu, J. et al. SN 2017egm: A helium-rich superluminous supernova with multiple bumps in the light curves. Astrophys. J. 949, 23 (2023).

    Article 
    ADS 

    Google Scholar 

  • Michel, F. C. Neutron star disk formation from supernova fall-back and possible observational consequences. Nature 333, 644–645 (1988).

    Article 
    ADS 

    Google Scholar 

  • Chevalier, R. A. Neutron star accretion in a supernova. Astrophys. J. 346, 847 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, W., Woosley, S. E. & Heger, A. Fallback and black hole production in massive stars. Astrophys. J. 679, 639–654 (2008).

    Article 
    ADS 

    Google Scholar 

  • Dexter, J. & Kasen, D. Supernova light curves powered by fallback accretion. Astrophys. J. 772, 30 (2013).

    Article 
    ADS 

    Google Scholar 

  • Moriya, T. J., Nicholl, M. & Guillochon, J. Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. Astrophys. J. 867, 113 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Moriya, T. J., Müller, B., Chan, C., Heger, A. & Blinnikov, S. I. Fallback accretion-powered supernova light curves based on a neutrino-driven explosion simulation of a 40 M star. Astrophys. J. 880, 21 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zanin, R. et al. Gamma rays detected from Cygnus X-1 with likely jet origin. Astron. Astrophys. 596, A55 (2016).

    Article 

    Google Scholar 

  • Akashi, M. & Soker, N. Simulating jets from a neutron star companion hours after a core-collapse supernova. Astrophys. J. 901, 53 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hober, O., Bear, E. & Soker, N. Feeding post-core collapse supernova explosion jets with an inflated main sequence companion. Mon. Not. R. Astron. Soc. 516, 1846–1854 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Renzo, M. et al. Massive runaway and walkaway stars. A study of the kinematical imprints of the physical processes governing the evolution and explosion of their binary progenitors. Astron. Astrophys. 624, A66 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chrimes, A. A. et al. Where are the magnetar binary companions? Candidates from a comparison with binary population synthesis predictions. Mon. Not. R. Astron. Soc. 513, 3550–3563 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Monard, L. Transient Discovery Report for 2022-05-05. Transient Name Server Discovery Report 2022-1198 (2022).

  • Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018).

    Article 
    ADS 

    Google Scholar 

  • Hodgkin, S. T. et al. Gaia Early Data Release 3. Gaia photometric science alerts. Astron. Astrophys. 652, A76 (2021).

    Article 

    Google Scholar 

  • Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at https://doi.org/10.48550/arXiv.1612.05560(2016).

  • Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    Article 
    ADS 

    Google Scholar 

  • Graham, M. J. et al. The Zwicky Transient Facility: science objectives. Publ. Astron. Soc. Pac. 131, 078001 (2019).

    Article 
    ADS 

    Google Scholar 

  • Mould, J. R. et al. The Hubble Space Telescope Key Project on the extragalactic distance scale. XXVIII. Combining the constraints on the Hubble constant. Astrophys. J. 529, 786–794 (2000).

    Article 
    ADS 

    Google Scholar 

  • Komatsu, E. et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011).

    Article 
    ADS 

    Google Scholar 

  • Riess, A. G. et al. A comprehensive measurement of the local value of the Hubble constant with 1 km s−1 Mpc−1 uncertainty from the Hubble Space Telescope and the SH0ES team. Astrophys. J. Lett. 934, L7 (2022).

    Article 
    ADS 

    Google Scholar 

  • Nasonova, O. G., de Freitas Pacheco, J. A. & Karachentsev, I. D. Hubble flow around Fornax cluster of galaxies. Astron. Astrophys. 532, A104 (2011).

    Article 

    Google Scholar 

  • Tully, R. B. et al. Cosmicflows-2: the data. Astron. J. 146, 86 (2013).

    Article 
    ADS 

    Google Scholar 

  • Erwin, P. & Debattista, V. P. The frequency and stellar-mass dependence of boxy/peanut-shaped bulges in barred galaxies. Mon. Not. R. Astron. Soc. 468, 2058–2080 (2017).

    Article 
    ADS 

    Google Scholar 

  • Poznanski, D., Prochaska, J. X. & Bloom, J. S. An empirical relation between sodium absorption and dust extinction. Mon. Not. R. Astron. Soc. 426, 1465–1474 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lan, T.-W., Ménard, B. & Zhu, G. Exploring the diffuse interstellar bands with the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 452, 3629–3649 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fan, H. et al. The Apache Point Observatory Catalog of Optical Diffuse Interstellar Bands. Astrophys. J. 878, 151 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dekany, R. et al. The Zwicky Transient Facility: observing system. Publ. Astron. Soc. Pac. 132, 038001 (2020).

    Article 
    ADS 

    Google Scholar 

  • Masci, F. J. et al. The Zwicky Transient Facility: data processing, products, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019).

    Article 
    ADS 

    Google Scholar 

  • Zackay, B., Ofek, E. O. & Gal-Yam, A. Proper image subtraction—optimal transient detection, photometry, and hypothesis testing. Astrophys. J. 830, 27 (2016).

    Article 
    ADS 

    Google Scholar 

  • Cenko, S. B. et al. The automated Palomar 60 inch telescope. Publ. Astron. Soc. Pac. 118, 1396–1406 (2006).

    Article 
    ADS 

    Google Scholar 

  • Blagorodnova, N. et al. The SED machine: a robotic spectrograph for fast transient classification. Publ. Astron. Soc. Pac. 130, 035003 (2018).

    Article 
    ADS 

    Google Scholar 

  • Fremling, C. et al. PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806. Astron. Astrophys. 593, A68 (2016).

    Article 

    Google Scholar 

  • van der Walt, S., Crellin-Quick, A. & Bloom, J. S. SkyPortal: an astronomical data platform. J. Open Source Softw. 4, 1247 (2019).

    Article 
    ADS 

    Google Scholar 

  • Coughlin, M. W. et al. A data science platform to enable time-domain astronomy. Astrophys. J. Suppl. Ser. 267, 31 (2023).

    Article 
    ADS 

    Google Scholar 

  • Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).

    Article 
    ADS 

    Google Scholar 

  • Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).

    Article 
    ADS 

    Google Scholar 

  • Smith, K. W. et al. Design and operation of the ATLAS transient science server. Publ. Astron. Soc. Pac. 132, 085002 (2020).

    Article 
    ADS 

    Google Scholar 

  • Chen, P. et al. The first data release of CNIa0.02—A complete nearby (redshift < 0.02) sample of type Ia supernova light curves. Astrophys. J. Suppl. Ser. 259, 53 (2022).

    Article 
    ADS 

    Google Scholar 

  • Liu, X. Multi-channel Photometric Survey Telescope—Mephisto. In Electronic Proceedings of ‘Galactic Archaeology in the Gaia Era’ 14 (Sexten Center for Astrophysics (SCfA), 2019).

  • Yuan, X. et al. Development of the multi-channel photometric survey telescope. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 11445 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 114457M (eds Marshall, H. K. et al.) (2020).

  • Yaron, O. & Gal-Yam, A. WISeREP—an interactive supernova data repository. Publ. Astron. Soc. Pac. 124, 668 (2012).

    Article 
    ADS 

    Google Scholar 

  • Ben-Ami, S. et al. The SED machine: a dedicated transient IFU spectrograph. In Ground-based and Airborne Instrumentation for Astronomy IV, vol. 8446 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds McLean, I. S. et al.) (2012).

  • Rigault, M. et al. Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm. Astron. Astrophys. 627, A115 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kim, Y. L. et al. New modules for the SEDMachine to remove contaminations from cosmic rays and non-target light: byecr and contsep. Publ. Astron. Soc. Pac. 134, 024505 (2022).

    Article 
    ADS 

    Google Scholar 

  • Oke, J. B. & Gunn, J. E. An efficient low resolution and moderate resolution spectrograph for the Hale telescope. Publ. Astron. Soc. Pac. 94, 586 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Prochaska, J. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).

    Article 
    ADS 

    Google Scholar 

  • Prochaska, J. X. et al. pypeit/PypeIt: Release 1.0.0. Zenodo (2020).

  • Fabricant, D. et al. Binospec: a wide-field imaging spectrograph for the MMT. Publ. Astron. Soc. Pac. 131, 075004 (2019).

    Article 
    ADS 

    Google Scholar 

  • Kansky, J. et al. Binospec software system. Publ. Astron. Soc. Pac. 131, 075005 (2019).

    Article 
    ADS 

    Google Scholar 

  • Simcoe, R. A. et al. FIRE: a facility class near-infrared Echelle spectrometer for the Magellan telescopes. Publ. Astron. Soc. Pac. 125, 270 (2013).

    Article 
    ADS 

    Google Scholar 

  • Dressler, A. et al. IMACS: the Inamori-Magellan areal camera and spectrograph on Magellan-Baade. Publ. Astron. Soc. Pac. 123, 288 (2011).

    Article 
    ADS 

    Google Scholar 

  • Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).

    Article 

    Google Scholar 

  • van Dokkum, P. G. Cosmic-ray rejection by Laplacian edge detection. Publ. Astron. Soc. Pac. 113, 1420–1427 (2001).

    Article 
    ADS 

    Google Scholar 

  • Goldoni, P. et al. Data reduction software of the X-shooter spectrograph. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6269 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 62692K (eds McLean, I. S. & Iye, M.) (2006).

  • Modigliani, A. et al. The X-shooter pipeline. In Observatory Operations: Strategies, Processes, and Systems III, vol. 7737 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 773728 (eds Silva, D. R. et al.) (2010).

  • Freudling, W. et al. Automated data reduction workflows for astronomy. The ESO Reflex environment. Astron. Astrophys. 559, A96 (2013).

    Article 

    Google Scholar 

  • Smette, A. et al. Molecfit: A general tool for telluric absorption correction. I. Method and application to ESO instruments. Astron. Astrophys. 576, A77 (2015).

    Article 

    Google Scholar 

  • VanderPlas, J. T. & Ivezić, Ž. Periodograms for multiband astronomical time series. Astrophys. J. 812, 18 (2015).

    Article 
    ADS 

    Google Scholar 

  • Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).

    Article 
    ADS 

    Google Scholar 

  • Scargle, J. D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982).

    Article 
    ADS 

    Google Scholar 

  • VanderPlas, J. T. Understanding the Lomb–Scargle periodogram. Astrophys. J. Suppl. Ser. 236, 16 (2018).

    Article 
    ADS 

    Google Scholar 

  • Lyman, J. D., Bersier, D. & James, P. A. Bolometric corrections for optical light curves of core-collapse supernovae. Mon. Not. R. Astron. Soc. 437, 3848–3862 (2014).

    Article 
    ADS 

    Google Scholar 

  • Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article 
    ADS 

    Google Scholar 

  • Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sharon, A. & Kushnir, D. The γ-ray deposition histories of core-collapse supernovae. Mon. Not. R. Astron. Soc. 496, 4517–4545 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Folatelli, G. et al. SN 2005bf: a possible transition event between type Ib/c supernovae and gamma-ray bursts. Astrophys. J. 641, 1039–1050 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Taddia, F. et al. PTF11mnb: First analog of supernova 2005bf. Long-rising, double-peaked supernova Ic from a massive progenitor. Astron. Astrophys. 609, A106 (2018).

    Article 

    Google Scholar 

  • Gutiérrez, C. P. et al. The double-peaked type Ic supernova 2019cad: another SN 2005bf-like object. Mon. Not. R. Astron. Soc. 504, 4907–4922 (2021).

    Article 
    ADS 

    Google Scholar 

  • Gomez, S. et al. The luminous and double-peaked type Ic supernova 2019stc: evidence for multiple energy sources. Astrophys. J. 913, 143 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chugai, N. N. & Utrobin, V. P. Origin of post-maximum bump in luminous Type Ic supernova 2019stc. Mon. Not. R. Astron. Soc. 512, L71–L73 (2022).

    Article 
    ADS 

    Google Scholar 

  • Gomez, S., Berger, E., Nicholl, M., Blanchard, P. K. & Hosseinzadeh, G. Luminous supernovae: unveiling a population between superluminous and normal core-collapse supernovae. Astrophys. J. 941, 107 (2022).

    Article 
    ADS 

    Google Scholar 

  • Kuncarayakti, H. et al. The broad-lined Type-Ic supernova SN 2022xxf and its extraordinary two-humped light curves. Astron. Astrophys. 678, A209 (2023).

  • Das, K. K. et al. Probing pre-supernova mass loss in double-peaked Type Ibc supernovae from the Zwicky Transient Facility. Preprint at https://doi.org/10.48550/arXiv.2306.04698 (2023).

  • Piro, A. L. Using double-peaked supernova light curves to study extended material. Astrophys. J. Lett. 808, L51 (2015).

    Article 
    ADS 

    Google Scholar 

  • Jin, H., Yoon, S.-C. & Blinnikov, S. The effect of circumstellar matter on the double-peaked type Ic supernovae and implications for LSQ14efd, iPTF15dtg, and SN 2020bvc. Astrophys. J. 910, 68 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Orellana, M. & Bersten, M. C. Supernova double-peaked light curves from double-nickel distribution. Astron. Astrophys. 667, A92 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bersten, M. C., Tanaka, M., Tominaga, N., Benvenuto, O. G. & Nomoto, K. Early ultraviolet/optical emission of the type Ib SN 2008D. Astrophys. J. 767, 143 (2013).

    Article 
    ADS 

    Google Scholar 

  • Walton, D. J., Roberts, T. P., Mateos, S. & Heard, V. 2XMM ultraluminous X-ray source candidates in nearby galaxies. Mon. Not. R. Astron. Soc. 416, 1844–1861 (2011).

    Article 
    ADS 

    Google Scholar 

  • Israel, G. L. et al. An accreting pulsar with extreme properties drives an ultraluminous X-ray source in NGC 5907. Science 355, 817–819 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Brightman, M. et al. Breaking the limit: super-Eddington accretion onto black holes and neutron stars. Bull. AAS 51, 352 (2019).

    Google Scholar 

  • Grzegorzek, J. PSH Transient Classification Report for 2022-05-11. Transient Name Server Classification Report 2022-1261, 1 (2022).

  • Cosentino, S. P. et al. ePESSTO+ Transient Classification Report for 2022-05-24. Transient Name Server Classification Report 2022-1409, 1 (2022).

  • Drout, M. R. et al. The double-peaked SN 2013ge: a type Ib/c SN with an asymmetric mass ejection or an extended progenitor envelope. Astrophys. J. 821, 57 (2016).

    Article 
    ADS 

    Google Scholar 

  • Hachinger, S. et al. How much H and He is ‘hidden’ in SNe Ib/c? – I. Low-mass objects. Mon. Not. R. Astron. Soc. 422, 70–88 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dessart, L., Yoon, S.-C., Aguilera-Dena, D. R. & Langer, N. Supernovae Ib and Ic from the explosion of helium stars. Astron. Astrophys. 642, A106 (2020).

    Article 
    CAS 

    Google Scholar 

  • Williamson, M., Kerzendorf, W. & Modjaz, M. Modeling type Ic supernovae with TARDIS: hidden helium in SN 1994I? Astrophys. J. 908, 150 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tinyanont, S. et al. Keck Infrared Transient Survey I: survey description and data release 1. Preprint at https://doi.org/10.48550/arXiv.2309.07102 (2023).

  • Dessart, L. Simulations of light curves and spectra for superluminous type Ic supernovae powered by magnetars. Astron. Astrophys. 621, A141 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Omand, C. M. B. & Jerkstrand, A. Toward nebular spectral modeling of magnetar-powered supernovae. Astron. Astrophys. 673, A107 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Budaj, J., Richards, M. T. & Miller, B. A study of synthetic and observed Hα spectra of TT hydrae. Astrophys. J. 623, 411–424 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Miller, B., Budaj, J., Richards, M., Koubský, P. & Peters, G. J. Revealing the nature of algol disks through optical and UV spectroscopy, synthetic spectra, and tomography of TT hydrae. Astrophys. J. 656, 1075–1091 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Atwood-Stone, C., Miller, B. P., Richards, M. T., Budaj, J. & Peters, G. J. Modeling the accretion structure of AU Mon. Astrophys. J. 760, 134 (2012).

    Article 
    ADS 

    Google Scholar 

  • Patat, F., Chugai, N. & Mazzali, P. A. Late-time Hα emission from the hydrogen shell of SN 1993J. Astron. Astrophys. 299, 715 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Maeda, K. et al. The Unique Type Ib Supernova 2005bf at Nebular Phases: A Possible Birth Event of a Strongly Magnetized Neutron Star. Astrophys. J. 666, 1069–1082 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Taubenberger, S. et al. The He-rich stripped-envelope core-collapse supernova 2008ax. Mon. Not. R. Astron. Soc. 413, 2140–2156 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jerkstrand, A. et al. Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh. Astron. Astrophys. 573, A12 (2015).

    Article 

    Google Scholar 

  • Fang, Q. & Maeda, K. The origin of the Ha-like structure in nebular spectra of type IIb supernovae. Astrophys. J. 864, 47 (2018).

    Article 
    ADS 

    Google Scholar 

  • Matheson, T. et al. Optical spectroscopy of supernova 1993J during Its first 2500 days. Astron. J. 120, 1487–1498 (2000).

    Article 
    ADS 

    Google Scholar 

  • Matheson, T., Filippenko, A. V., Ho, L. C., Barth, A. J. & Leonard, D. C. Detailed analysis of early to late-time spectra of supernova 1993J. Astron. J. 120, 1499–1515 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dessart, L., Hillier, D. J., Sukhbold, T., Woosley, S. E. & Janka, H. T. Nebular phase properties of supernova Ibc from He-star explosions. Astron. Astrophys. 656, A61 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Marietta, E., Burrows, A. & Fryxell, B. Type IA supernova explosions in binary systems: the impact on the secondary star and its consequences. Astrophys. J. Suppl. Ser. 128, 615–650 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, Z.-W. et al. The interaction of core-collapse supernova ejecta with a companion star. Astron. Astrophys. 584, A11 (2015).

    Article 
    ADS 

    Google Scholar 

  • Dessart, L., Leonard, D. C. & Prieto, J. L. Spectral signatures of H-rich material stripped from a non-degenerate companion by a type Ia supernova. Astron. Astrophys. 638, A80 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kollmeier, J. A. et al. H α emission in the nebular spectrum of the type Ia supernova ASASSN-18tb. Mon. Not. R. Astron. Soc. 486, 3041–3046 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Prieto, J. L. et al. Variable Hα emission in the nebular spectra of the low-luminosity type Ia SN2018cqj/ATLAS18qtd. Astrophys. J. 889, 100 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Elias-Rosa, N. et al. Nebular Hα emission in type Ia supernova 2016jae. Astron. Astrophys. 652, A115 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yan, L. et al. Detection of broad Hα emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. Astrophys. J. 814, 108 (2015).

    Article 
    ADS 

    Google Scholar 

  • Moriya, T. J., Liu, Z.-W., Mackey, J., Chen, T.-W. & Langer, N. Revealing the binary origin of Type Ic superluminous supernovae through nebular hydrogen emission. Astron. Astrophys. 584, L5 (2015).

    Article 
    ADS 

    Google Scholar 

  • Murray, C. D. & Correia, A. C. M. in Exoplanets (ed. Seager, S.) 15–23 (Univ. Arizona Press, 2010).

  • Fruscione, A. et al. CIAO: Chandra’s data analysis system. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6270 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 62701V (eds Silva, D. R. & Doxsey, R. E.) (SPIE, 2006).

  • Kalberla, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) survey of galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Güver, T. & Özel, F. The relation between optical extinction and hydrogen column density in the Galaxy. Mon. Not. R. Astron. Soc. 400, 2050–2053 (2009).

    Article 
    ADS 

    Google Scholar 

  • Alp, D. et al. X-ray absorption in young core-collapse supernova remnants. Astrophys. J. 864, 175 (2018).

    Article 
    ADS 

    Google Scholar 

  • Chandra, P., Chevalier, R. A., Chugai, N., Fransson, C. & Soderberg, A. M. X-ray and radio emission from type IIn supernova SN 2010jl. Astrophys. J. 810, 32 (2015).

    Article 
    ADS 

    Google Scholar 

  • Immler, S. et al. Swift and Chandra detections of supernova 2006jc: evidence for interaction of the supernova shock with a circumstellar shell. Astrophys. J. Lett. 674, L85 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chandra, P. et al. Radio and X-ray observations of SN 2006jd: another strongly interacting type IIn supernova. Astrophys. J. 755, 110 (2012).

    Article 
    ADS 

    Google Scholar 

  • Stritzinger, M. et al. Multi-wavelength observations of the enduring type IIn supernovae 2005ip and 2006jd. Astrophys. J. 756, 173 (2012).

    Article 
    ADS 

    Google Scholar 

  • Harrison, F. A. et al. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-ray mission. Astrophys. J. 770, 103 (2013).

    Article 
    ADS 

    Google Scholar 

  • Wilson, W. E. et al. The Australia Telescope Compact Array Broad-band Backend: description and first results. Mon. Not. R. Astron. Soc. 416, 832–856 (2011).

    Article 
    ADS 

    Google Scholar 

  • Sault, R. J., Teuben, P. J. & Wright, M. C. H. in Astronomical Data Analysis Software and Systems IV Vol. 77 (eds Shaw, R. A. et al.) 433–436 (1995).

  • Chevalier, R. A. & Soker, N. Asymmetric envelope expansion of supernova 1987A. Astrophys. J. 341, 867–882 (1989).

    Article 
    ADS 

    Google Scholar 

  • Langer, N. Presupernova evolution of massive single and binary stars. Annu. Rev. Astron. Astrophys. 50, 107–164 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gal-Yam, A. et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Postnov, K. A. & Yungelson, L. R. The evolution of compact binary star systems. Living Rev. Relativ. 17, 3 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirai, R., Podsiadlowski, P. & Yamada, S. Comprehensive study of ejecta-companion interaction for core-collapse supernovae in massive binaries. Astrophys. J. 864, 119 (2018).

    Article 
    ADS 

    Google Scholar 

  • Ogata, M., Hirai, R. & Hijikawa, K. Observability of inflated companion stars after supernovae in massive binaries. Mon. Not. R. Astron. Soc. 505, 2485–2499 (2021).

    Article 
    ADS 

    Google Scholar 

  • Dosopoulou, F. & Kalogera, V. Orbital evolution of mass-transferring eccentric binary systems. II. Secular evolution. Astrophys. J. 825, 71 (2016).

    Article 
    ADS 

    Google Scholar 

  • Maund, J. R., Smartt, S. J., Kudritzki, R. P., Podsiadlowski, P. & Gilmore, G. F. The massive binary companion star to the progenitor of supernova 1993J. Nature 427, 129–131 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ryder, S. D. et al. Ultraviolet detection of the binary companion to the type IIb SN 2001ig. Astrophys. J. 856, 83 (2018).

    Article 
    ADS 

    Google Scholar 

  • Maund, J. R., Pastorello, A., Mattila, S., Itagaki, K. & Boles, T. The possible detection of a binary companion to a type Ibn supernova progenitor. Astrophys. J. 833, 128 (2016).

    Article 
    ADS 

    Google Scholar 

  • Sun, N.-C., Maund, J. R., Hirai, R., Crowther, P. A. & Podsiadlowski, P. Origins of type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions. Mon. Not. R. Astron. Soc. 491, 6000–6019 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Folatelli, G. et al. A blue point source at the location of supernova 2011dh. Astrophys. J. Lett. 793, L22 (2014).

    Article 
    ADS 

    Google Scholar 

  • Maund, J. R. The origin of the late-time luminosity of supernova 2011dh. Astrophys. J. 883, 86 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tauris, T. M. & Takens, R. J. Runaway velocities of stellar components originating from disrupted binaries via asymmetric supernova explosions. Astron. Astrophys. 330, 1047–1059 (1998).

    ADS 

    Google Scholar 

  • Portegies Zwart, S. F. The characteristics of high-velocity O and B stars which are ejected from supernovae in binary systems. Astrophys. J. 544, 437–442 (2000).

    Article 
    ADS 

    Google Scholar 

  • Kochanek, C. S., Auchettl, K. & Belczynski, K. Stellar binaries that survive supernovae. Mon. Not. R. Astron. Soc. 485, 5394–5410 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kochanek, C. S. Supernovae producing unbound binaries and triples. Mon. Not. R. Astron. Soc. 507, 5832–5846 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hameury, J. M. A review of the disc instability model for dwarf novae, soft X-ray transients and related objects. Adv. Space Res. 66, 1004–1024 (2020).

    Article 
    ADS 

    Google Scholar 

  • Atwood, W. B. et al. The large area telescope on the Fermi Gamma-Ray Space Telescope mission. Astrophys. J. 697, 1071–1102 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Abdollahi, S. et al. Incremental Fermi Large Area Telescope fourth source catalog. Astrophys. J. Suppl. Ser. 260, 53 (2022).

    Article 
    ADS 

    Google Scholar 

  • Ofek, E. O. & Zackay, B. Optimal matched filter in the low-number count Poisson noise regime and implications for X-ray source detection. Astronomical Journal 155, 169 (2018).

    Article 
    ADS 

    Google Scholar 

  • Dullo, B. T., Bouquin, A. Y. K., Gil de Paz, A., Knapen, J. H. & Gorgas, J. The Black Hole mass–color relations for early- and late-type galaxies: red and blue sequences. Astrophys. J. 898, 83 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Itoh, R. et al. Blazar Radio and Optical Survey (BROS): A catalog of blazar candidates showing flat radio spectrum and their optical identification in Pan-STARRS1 surveys. Astrophys. J. 901, 3 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liodakis, I., Romani, R. W., Filippenko, A. V., Kocevski, D. & Zheng, W. Probing blazar emission processes with optical/gamma-ray flare correlations. Astrophys. J. 880, 32 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Matz, S. M. et al. Gamma-ray line emission from SN1987A. Nature 331, 416–418 (1988).

    Article 
    ADS 

    Google Scholar 

  • Teegarden, B. J. et al. Resolution of the 1,238-keV γ-ray line from supernova 1987A. Nature 339, 122–123 (1989).

    Article 
    ADS 

    Google Scholar 

  • Churazov, E. et al. Gamma rays from type Ia supernova SN 2014J. Astrophys. J. 812, 62 (2015).

    Article 
    ADS 

    Google Scholar 

  • Ackermann, M. et al. Search for early gamma-ray production in supernovae located in a dense circumstellar medium with the Fermi LAT. Astrophys. J. 807, 169 (2015).

    Article 
    ADS 

    Google Scholar 

  • Renault-Tinacci, N., Kotera, K., Neronov, A. & Ando, S. Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. Astron. Astrophys. 611, A45 (2018).

    Article 
    ADS 

    Google Scholar 

  • Yuan, Q. et al. Fermi Large Area Telescope detection of gamma-ray emission from the direction of supernova iPTF14hls. Astrophys. J. Lett. 854, L18 (2018).

    Article 
    ADS 

    Google Scholar 

  • Prokhorov, D. A., Moraghan, A. & Vink, J. Search for gamma rays from SNe with a variable-size sliding-time-window analysis of the Fermi-LAT data. Mon. Not. R. Astron. Soc. 505, 1413–1421 (2021).

    Article 
    ADS 

    Google Scholar 

  • Xi, S.-Q. et al. A serendipitous discovery of GeV gamma-ray emission from supernova 2004dj in a survey of nearby star-forming galaxies with Fermi-LAT. Astrophys. J. Lett. 896, L33 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fermi LAT Collaboration et al. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3. Science 326, 1512 (2009).

    Article 
    ADS 

    Google Scholar 

  • Piano, G. et al. The AGILE monitoring of Cygnus X-3: transient gamma-ray emission and spectral constraints. Astron. Astrophys. 545, A110 (2012).

    Article 

    Google Scholar 

  • Modjaz, M. et al. Optical spectra of 73 stripped-envelope core-collapse supernovae. Astron. J. 147, 99 (2014).

    Article 
    ADS 

    Google Scholar 

  • Hunter, D. J. et al. Extensive optical and near-infrared observations of the nearby, narrow-lined type Ic SN 2007gr: days 5 to 415. Astron. Astrophys. 508, 371–389 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Taubenberger, S. et al. Nebular emission-line profiles of Type Ib/c supernovae – probing the ejecta asphericity. Mon. Not. R. Astron. Soc. 397, 677–694 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jerkstrand, A. et al. Long-duration superluminous supernovae at late times. Astrophys. J. 835, 13 (2017).

    Article 
    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *