Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. & Hartmann, D. H. How massive single stars end their life. Astrophys. J. 591, 288–300 (2003).
Google Scholar
Sana, H. et al. Binary interaction dominates the evolution of massive stars. Science 337, 444–446 (2012).
Google Scholar
Hirai, R. & Podsiadlowski, P. Neutron stars colliding with binary companions: formation of hypervelocity stars, pulsar planets, bumpy superluminous supernovae and Thorne-Żytkow objects. Mon. Not. R. Astron. Soc. 517, 4544–4556 (2022).
Google Scholar
Gal-Yam, A. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 195–237 (Springer, 2017).
Nicholl, M. et al. SN 2015BN: a detailed multi-wavelength view of a nearby superluminous supernova. Astrophys. J. 826, 39 (2016).
Google Scholar
Yan, L. et al. Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the Intermediate Palomar Transient Factory. Astrophys. J. 848, 6 (2017).
Google Scholar
Hosseinzadeh, G. et al. Bumpy declining light curves are common in hydrogen-poor superluminous supernovae. Astrophys. J. 933, 14 (2022).
Google Scholar
West, S. L. et al. SN 2020qlb: a hydrogen-poor superluminous supernova with well-characterized light curve undulations. Astron. Astrophys. 670, A7 (2023).
Google Scholar
Chen, Z. H. et al. The hydrogen-poor superluminous supernovae from the Zwicky Transient Facility Phase I Survey. II. Light-curve modeling and characterization of undulations. Astrophys. J. 943, 42 (2023).
Google Scholar
Bonanos, A. Z. & Boumis, P. Evidence for rapid variability in the optical light curve of the Type Ia SN 2014J. Astron. Astrophys. 585, A19 (2016).
Google Scholar
Gal-Yam, A. et al. Supernova 2007bi as a pair-instability explosion. Nature 462, 624–627 (2009).
Google Scholar
Matheson, T., Filippenko, A. V., Li, W., Leonard, D. C. & Shields, J. C. Optical spectroscopy of type Ib/c supernovae. Astron. J. 121, 1648–1675 (2001).
Google Scholar
Mazzali, P. A. et al. Properties of two hypernovae entering the nebular phase: SN 1997ef and SN 1997dq. Astrophys. J. 614, 858–863 (2004).
Google Scholar
Milisavljevic, D. et al. SN 2012au: a golden link between superluminous supernovae and their lower-luminosity counterparts. Astrophys. J. Lett. 770, L38 (2013).
Google Scholar
Taddia, F. et al. The luminous late-time emission of the type-Ic supernova iPTF15dtg – evidence for powering from a magnetar? Astron. Astrophys. 621, A64 (2019).
Google Scholar
Zdziarski, A. A. & Svensson, R. Absorption of X-rays and gamma rays at cosmological distances. Astrophys. J. 344, 551–566 (1989).
Google Scholar
Acharyya, A. et al. VERITAS and Fermi-LAT constraints on the gamma-ray emission from superluminous supernovae SN2015bn and SN2017egm. Astrophys. J. 945, 30 (2023).
Google Scholar
Chatzopoulos, E. & Wheeler, J. C. Hydrogen-poor circumstellar shells from pulsational pair-instability supernovae with rapidly rotating progenitors. Astrophys. J. 760, 154 (2012).
Google Scholar
Chevalier, R. A. & Fransson, C. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 875–937 (Springer, 2017).
Chen, T. W. et al. The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. Astron. Astrophys. 602, A9 (2017).
Google Scholar
Lau, R. M. et al. Nested dust shells around the Wolf–Rayet binary WR 140 observed with JWST. Nat. Astron. 6, 1308–1316 (2022).
Google Scholar
Ofek, E. O. et al. SN 2010jl: optical to hard X-ray observations reveal an explosion embedded in a ten solar mass cocoon. Astrophys. J. 781, 42 (2014).
Google Scholar
Zhu, J. et al. SN 2017egm: A helium-rich superluminous supernova with multiple bumps in the light curves. Astrophys. J. 949, 23 (2023).
Google Scholar
Michel, F. C. Neutron star disk formation from supernova fall-back and possible observational consequences. Nature 333, 644–645 (1988).
Google Scholar
Chevalier, R. A. Neutron star accretion in a supernova. Astrophys. J. 346, 847 (1989).
Google Scholar
Zhang, W., Woosley, S. E. & Heger, A. Fallback and black hole production in massive stars. Astrophys. J. 679, 639–654 (2008).
Google Scholar
Dexter, J. & Kasen, D. Supernova light curves powered by fallback accretion. Astrophys. J. 772, 30 (2013).
Google Scholar
Moriya, T. J., Nicholl, M. & Guillochon, J. Systematic investigation of the fallback accretion-powered model for hydrogen-poor superluminous supernovae. Astrophys. J. 867, 113 (2018).
Google Scholar
Moriya, T. J., Müller, B., Chan, C., Heger, A. & Blinnikov, S. I. Fallback accretion-powered supernova light curves based on a neutrino-driven explosion simulation of a 40 M⊙ star. Astrophys. J. 880, 21 (2019).
Google Scholar
Zanin, R. et al. Gamma rays detected from Cygnus X-1 with likely jet origin. Astron. Astrophys. 596, A55 (2016).
Google Scholar
Akashi, M. & Soker, N. Simulating jets from a neutron star companion hours after a core-collapse supernova. Astrophys. J. 901, 53 (2020).
Google Scholar
Hober, O., Bear, E. & Soker, N. Feeding post-core collapse supernova explosion jets with an inflated main sequence companion. Mon. Not. R. Astron. Soc. 516, 1846–1854 (2022).
Google Scholar
Renzo, M. et al. Massive runaway and walkaway stars. A study of the kinematical imprints of the physical processes governing the evolution and explosion of their binary progenitors. Astron. Astrophys. 624, A66 (2019).
Google Scholar
Chrimes, A. A. et al. Where are the magnetar binary companions? Candidates from a comparison with binary population synthesis predictions. Mon. Not. R. Astron. Soc. 513, 3550–3563 (2022).
Google Scholar
Monard, L. Transient Discovery Report for 2022-05-05. Transient Name Server Discovery Report 2022-1198 (2022).
Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018).
Google Scholar
Hodgkin, S. T. et al. Gaia Early Data Release 3. Gaia photometric science alerts. Astron. Astrophys. 652, A76 (2021).
Google Scholar
Chambers, K. C. et al. The Pan-STARRS1 Surveys. Preprint at https://doi.org/10.48550/arXiv.1612.05560(2016).
Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).
Google Scholar
Graham, M. J. et al. The Zwicky Transient Facility: science objectives. Publ. Astron. Soc. Pac. 131, 078001 (2019).
Google Scholar
Mould, J. R. et al. The Hubble Space Telescope Key Project on the extragalactic distance scale. XXVIII. Combining the constraints on the Hubble constant. Astrophys. J. 529, 786–794 (2000).
Google Scholar
Komatsu, E. et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011).
Google Scholar
Riess, A. G. et al. A comprehensive measurement of the local value of the Hubble constant with 1 km s−1 Mpc−1 uncertainty from the Hubble Space Telescope and the SH0ES team. Astrophys. J. Lett. 934, L7 (2022).
Google Scholar
Nasonova, O. G., de Freitas Pacheco, J. A. & Karachentsev, I. D. Hubble flow around Fornax cluster of galaxies. Astron. Astrophys. 532, A104 (2011).
Google Scholar
Tully, R. B. et al. Cosmicflows-2: the data. Astron. J. 146, 86 (2013).
Google Scholar
Erwin, P. & Debattista, V. P. The frequency and stellar-mass dependence of boxy/peanut-shaped bulges in barred galaxies. Mon. Not. R. Astron. Soc. 468, 2058–2080 (2017).
Google Scholar
Poznanski, D., Prochaska, J. X. & Bloom, J. S. An empirical relation between sodium absorption and dust extinction. Mon. Not. R. Astron. Soc. 426, 1465–1474 (2012).
Google Scholar
Lan, T.-W., Ménard, B. & Zhu, G. Exploring the diffuse interstellar bands with the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 452, 3629–3649 (2015).
Google Scholar
Fan, H. et al. The Apache Point Observatory Catalog of Optical Diffuse Interstellar Bands. Astrophys. J. 878, 151 (2019).
Google Scholar
Dekany, R. et al. The Zwicky Transient Facility: observing system. Publ. Astron. Soc. Pac. 132, 038001 (2020).
Google Scholar
Masci, F. J. et al. The Zwicky Transient Facility: data processing, products, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019).
Google Scholar
Zackay, B., Ofek, E. O. & Gal-Yam, A. Proper image subtraction—optimal transient detection, photometry, and hypothesis testing. Astrophys. J. 830, 27 (2016).
Google Scholar
Cenko, S. B. et al. The automated Palomar 60 inch telescope. Publ. Astron. Soc. Pac. 118, 1396–1406 (2006).
Google Scholar
Blagorodnova, N. et al. The SED machine: a robotic spectrograph for fast transient classification. Publ. Astron. Soc. Pac. 130, 035003 (2018).
Google Scholar
Fremling, C. et al. PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806. Astron. Astrophys. 593, A68 (2016).
Google Scholar
van der Walt, S., Crellin-Quick, A. & Bloom, J. S. SkyPortal: an astronomical data platform. J. Open Source Softw. 4, 1247 (2019).
Google Scholar
Coughlin, M. W. et al. A data science platform to enable time-domain astronomy. Astrophys. J. Suppl. Ser. 267, 31 (2023).
Google Scholar
Shappee, B. J. et al. The man behind the curtain: X-rays drive the UV through NIR variability in the 2013 active galactic nucleus outburst in NGC 2617. Astrophys. J. 788, 48 (2014).
Google Scholar
Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).
Google Scholar
Smith, K. W. et al. Design and operation of the ATLAS transient science server. Publ. Astron. Soc. Pac. 132, 085002 (2020).
Google Scholar
Chen, P. et al. The first data release of CNIa0.02—A complete nearby (redshift < 0.02) sample of type Ia supernova light curves. Astrophys. J. Suppl. Ser. 259, 53 (2022).
Google Scholar
Liu, X. Multi-channel Photometric Survey Telescope—Mephisto. In Electronic Proceedings of ‘Galactic Archaeology in the Gaia Era’ 14 (Sexten Center for Astrophysics (SCfA), 2019).
Yuan, X. et al. Development of the multi-channel photometric survey telescope. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 11445 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 114457M (eds Marshall, H. K. et al.) (2020).
Yaron, O. & Gal-Yam, A. WISeREP—an interactive supernova data repository. Publ. Astron. Soc. Pac. 124, 668 (2012).
Google Scholar
Ben-Ami, S. et al. The SED machine: a dedicated transient IFU spectrograph. In Ground-based and Airborne Instrumentation for Astronomy IV, vol. 8446 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds McLean, I. S. et al.) (2012).
Rigault, M. et al. Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm. Astron. Astrophys. 627, A115 (2019).
Google Scholar
Kim, Y. L. et al. New modules for the SEDMachine to remove contaminations from cosmic rays and non-target light: byecr and contsep. Publ. Astron. Soc. Pac. 134, 024505 (2022).
Google Scholar
Oke, J. B. & Gunn, J. E. An efficient low resolution and moderate resolution spectrograph for the Hale telescope. Publ. Astron. Soc. Pac. 94, 586 (1982).
Google Scholar
Prochaska, J. et al. PypeIt: the Python spectroscopic data reduction pipeline. J. Open Source Softw. 5, 2308 (2020).
Google Scholar
Prochaska, J. X. et al. pypeit/PypeIt: Release 1.0.0. Zenodo (2020).
Fabricant, D. et al. Binospec: a wide-field imaging spectrograph for the MMT. Publ. Astron. Soc. Pac. 131, 075004 (2019).
Google Scholar
Kansky, J. et al. Binospec software system. Publ. Astron. Soc. Pac. 131, 075005 (2019).
Google Scholar
Simcoe, R. A. et al. FIRE: a facility class near-infrared Echelle spectrometer for the Magellan telescopes. Publ. Astron. Soc. Pac. 125, 270 (2013).
Google Scholar
Dressler, A. et al. IMACS: the Inamori-Magellan areal camera and spectrograph on Magellan-Baade. Publ. Astron. Soc. Pac. 123, 288 (2011).
Google Scholar
Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).
Google Scholar
van Dokkum, P. G. Cosmic-ray rejection by Laplacian edge detection. Publ. Astron. Soc. Pac. 113, 1420–1427 (2001).
Google Scholar
Goldoni, P. et al. Data reduction software of the X-shooter spectrograph. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6269 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 62692K (eds McLean, I. S. & Iye, M.) (2006).
Modigliani, A. et al. The X-shooter pipeline. In Observatory Operations: Strategies, Processes, and Systems III, vol. 7737 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 773728 (eds Silva, D. R. et al.) (2010).
Freudling, W. et al. Automated data reduction workflows for astronomy. The ESO Reflex environment. Astron. Astrophys. 559, A96 (2013).
Google Scholar
Smette, A. et al. Molecfit: A general tool for telluric absorption correction. I. Method and application to ESO instruments. Astron. Astrophys. 576, A77 (2015).
Google Scholar
VanderPlas, J. T. & Ivezić, Ž. Periodograms for multiband astronomical time series. Astrophys. J. 812, 18 (2015).
Google Scholar
Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).
Google Scholar
Scargle, J. D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982).
Google Scholar
VanderPlas, J. T. Understanding the Lomb–Scargle periodogram. Astrophys. J. Suppl. Ser. 236, 16 (2018).
Google Scholar
Lyman, J. D., Bersier, D. & James, P. A. Bolometric corrections for optical light curves of core-collapse supernovae. Mon. Not. R. Astron. Soc. 437, 3848–3862 (2014).
Google Scholar
Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).
Google Scholar
Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).
Google Scholar
Sharon, A. & Kushnir, D. The γ-ray deposition histories of core-collapse supernovae. Mon. Not. R. Astron. Soc. 496, 4517–4545 (2020).
Google Scholar
Folatelli, G. et al. SN 2005bf: a possible transition event between type Ib/c supernovae and gamma-ray bursts. Astrophys. J. 641, 1039–1050 (2006).
Google Scholar
Taddia, F. et al. PTF11mnb: First analog of supernova 2005bf. Long-rising, double-peaked supernova Ic from a massive progenitor. Astron. Astrophys. 609, A106 (2018).
Google Scholar
Gutiérrez, C. P. et al. The double-peaked type Ic supernova 2019cad: another SN 2005bf-like object. Mon. Not. R. Astron. Soc. 504, 4907–4922 (2021).
Google Scholar
Gomez, S. et al. The luminous and double-peaked type Ic supernova 2019stc: evidence for multiple energy sources. Astrophys. J. 913, 143 (2021).
Google Scholar
Chugai, N. N. & Utrobin, V. P. Origin of post-maximum bump in luminous Type Ic supernova 2019stc. Mon. Not. R. Astron. Soc. 512, L71–L73 (2022).
Google Scholar
Gomez, S., Berger, E., Nicholl, M., Blanchard, P. K. & Hosseinzadeh, G. Luminous supernovae: unveiling a population between superluminous and normal core-collapse supernovae. Astrophys. J. 941, 107 (2022).
Google Scholar
Kuncarayakti, H. et al. The broad-lined Type-Ic supernova SN 2022xxf and its extraordinary two-humped light curves. Astron. Astrophys. 678, A209 (2023).
Das, K. K. et al. Probing pre-supernova mass loss in double-peaked Type Ibc supernovae from the Zwicky Transient Facility. Preprint at https://doi.org/10.48550/arXiv.2306.04698 (2023).
Piro, A. L. Using double-peaked supernova light curves to study extended material. Astrophys. J. Lett. 808, L51 (2015).
Google Scholar
Jin, H., Yoon, S.-C. & Blinnikov, S. The effect of circumstellar matter on the double-peaked type Ic supernovae and implications for LSQ14efd, iPTF15dtg, and SN 2020bvc. Astrophys. J. 910, 68 (2021).
Google Scholar
Orellana, M. & Bersten, M. C. Supernova double-peaked light curves from double-nickel distribution. Astron. Astrophys. 667, A92 (2022).
Google Scholar
Bersten, M. C., Tanaka, M., Tominaga, N., Benvenuto, O. G. & Nomoto, K. Early ultraviolet/optical emission of the type Ib SN 2008D. Astrophys. J. 767, 143 (2013).
Google Scholar
Walton, D. J., Roberts, T. P., Mateos, S. & Heard, V. 2XMM ultraluminous X-ray source candidates in nearby galaxies. Mon. Not. R. Astron. Soc. 416, 1844–1861 (2011).
Google Scholar
Israel, G. L. et al. An accreting pulsar with extreme properties drives an ultraluminous X-ray source in NGC 5907. Science 355, 817–819 (2017).
Google Scholar
Brightman, M. et al. Breaking the limit: super-Eddington accretion onto black holes and neutron stars. Bull. AAS 51, 352 (2019).
Grzegorzek, J. PSH Transient Classification Report for 2022-05-11. Transient Name Server Classification Report 2022-1261, 1 (2022).
Cosentino, S. P. et al. ePESSTO+ Transient Classification Report for 2022-05-24. Transient Name Server Classification Report 2022-1409, 1 (2022).
Drout, M. R. et al. The double-peaked SN 2013ge: a type Ib/c SN with an asymmetric mass ejection or an extended progenitor envelope. Astrophys. J. 821, 57 (2016).
Google Scholar
Hachinger, S. et al. How much H and He is ‘hidden’ in SNe Ib/c? – I. Low-mass objects. Mon. Not. R. Astron. Soc. 422, 70–88 (2012).
Google Scholar
Dessart, L., Yoon, S.-C., Aguilera-Dena, D. R. & Langer, N. Supernovae Ib and Ic from the explosion of helium stars. Astron. Astrophys. 642, A106 (2020).
Google Scholar
Williamson, M., Kerzendorf, W. & Modjaz, M. Modeling type Ic supernovae with TARDIS: hidden helium in SN 1994I? Astrophys. J. 908, 150 (2021).
Google Scholar
Tinyanont, S. et al. Keck Infrared Transient Survey I: survey description and data release 1. Preprint at https://doi.org/10.48550/arXiv.2309.07102 (2023).
Dessart, L. Simulations of light curves and spectra for superluminous type Ic supernovae powered by magnetars. Astron. Astrophys. 621, A141 (2019).
Google Scholar
Omand, C. M. B. & Jerkstrand, A. Toward nebular spectral modeling of magnetar-powered supernovae. Astron. Astrophys. 673, A107 (2023).
Google Scholar
Budaj, J., Richards, M. T. & Miller, B. A study of synthetic and observed Hα spectra of TT hydrae. Astrophys. J. 623, 411–424 (2005).
Google Scholar
Miller, B., Budaj, J., Richards, M., Koubský, P. & Peters, G. J. Revealing the nature of algol disks through optical and UV spectroscopy, synthetic spectra, and tomography of TT hydrae. Astrophys. J. 656, 1075–1091 (2007).
Google Scholar
Atwood-Stone, C., Miller, B. P., Richards, M. T., Budaj, J. & Peters, G. J. Modeling the accretion structure of AU Mon. Astrophys. J. 760, 134 (2012).
Google Scholar
Patat, F., Chugai, N. & Mazzali, P. A. Late-time Hα emission from the hydrogen shell of SN 1993J. Astron. Astrophys. 299, 715 (1995).
Google Scholar
Maeda, K. et al. The Unique Type Ib Supernova 2005bf at Nebular Phases: A Possible Birth Event of a Strongly Magnetized Neutron Star. Astrophys. J. 666, 1069–1082 (2007).
Google Scholar
Taubenberger, S. et al. The He-rich stripped-envelope core-collapse supernova 2008ax. Mon. Not. R. Astron. Soc. 413, 2140–2156 (2011).
Google Scholar
Jerkstrand, A. et al. Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh. Astron. Astrophys. 573, A12 (2015).
Google Scholar
Fang, Q. & Maeda, K. The origin of the Ha-like structure in nebular spectra of type IIb supernovae. Astrophys. J. 864, 47 (2018).
Google Scholar
Matheson, T. et al. Optical spectroscopy of supernova 1993J during Its first 2500 days. Astron. J. 120, 1487–1498 (2000).
Google Scholar
Matheson, T., Filippenko, A. V., Ho, L. C., Barth, A. J. & Leonard, D. C. Detailed analysis of early to late-time spectra of supernova 1993J. Astron. J. 120, 1499–1515 (2000).
Google Scholar
Dessart, L., Hillier, D. J., Sukhbold, T., Woosley, S. E. & Janka, H. T. Nebular phase properties of supernova Ibc from He-star explosions. Astron. Astrophys. 656, A61 (2021).
Google Scholar
Marietta, E., Burrows, A. & Fryxell, B. Type IA supernova explosions in binary systems: the impact on the secondary star and its consequences. Astrophys. J. Suppl. Ser. 128, 615–650 (2000).
Google Scholar
Liu, Z.-W. et al. The interaction of core-collapse supernova ejecta with a companion star. Astron. Astrophys. 584, A11 (2015).
Google Scholar
Dessart, L., Leonard, D. C. & Prieto, J. L. Spectral signatures of H-rich material stripped from a non-degenerate companion by a type Ia supernova. Astron. Astrophys. 638, A80 (2020).
Google Scholar
Kollmeier, J. A. et al. H α emission in the nebular spectrum of the type Ia supernova ASASSN-18tb. Mon. Not. R. Astron. Soc. 486, 3041–3046 (2019).
Google Scholar
Prieto, J. L. et al. Variable Hα emission in the nebular spectra of the low-luminosity type Ia SN2018cqj/ATLAS18qtd. Astrophys. J. 889, 100 (2020).
Google Scholar
Elias-Rosa, N. et al. Nebular Hα emission in type Ia supernova 2016jae. Astron. Astrophys. 652, A115 (2021).
Google Scholar
Yan, L. et al. Detection of broad Hα emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. Astrophys. J. 814, 108 (2015).
Google Scholar
Moriya, T. J., Liu, Z.-W., Mackey, J., Chen, T.-W. & Langer, N. Revealing the binary origin of Type Ic superluminous supernovae through nebular hydrogen emission. Astron. Astrophys. 584, L5 (2015).
Google Scholar
Murray, C. D. & Correia, A. C. M. in Exoplanets (ed. Seager, S.) 15–23 (Univ. Arizona Press, 2010).
Fruscione, A. et al. CIAO: Chandra’s data analysis system. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6270 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 62701V (eds Silva, D. R. & Doxsey, R. E.) (SPIE, 2006).
Kalberla, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) survey of galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).
Google Scholar
Güver, T. & Özel, F. The relation between optical extinction and hydrogen column density in the Galaxy. Mon. Not. R. Astron. Soc. 400, 2050–2053 (2009).
Google Scholar
Alp, D. et al. X-ray absorption in young core-collapse supernova remnants. Astrophys. J. 864, 175 (2018).
Google Scholar
Chandra, P., Chevalier, R. A., Chugai, N., Fransson, C. & Soderberg, A. M. X-ray and radio emission from type IIn supernova SN 2010jl. Astrophys. J. 810, 32 (2015).
Google Scholar
Immler, S. et al. Swift and Chandra detections of supernova 2006jc: evidence for interaction of the supernova shock with a circumstellar shell. Astrophys. J. Lett. 674, L85 (2008).
Google Scholar
Chandra, P. et al. Radio and X-ray observations of SN 2006jd: another strongly interacting type IIn supernova. Astrophys. J. 755, 110 (2012).
Google Scholar
Stritzinger, M. et al. Multi-wavelength observations of the enduring type IIn supernovae 2005ip and 2006jd. Astrophys. J. 756, 173 (2012).
Google Scholar
Harrison, F. A. et al. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-ray mission. Astrophys. J. 770, 103 (2013).
Google Scholar
Wilson, W. E. et al. The Australia Telescope Compact Array Broad-band Backend: description and first results. Mon. Not. R. Astron. Soc. 416, 832–856 (2011).
Google Scholar
Sault, R. J., Teuben, P. J. & Wright, M. C. H. in Astronomical Data Analysis Software and Systems IV Vol. 77 (eds Shaw, R. A. et al.) 433–436 (1995).
Chevalier, R. A. & Soker, N. Asymmetric envelope expansion of supernova 1987A. Astrophys. J. 341, 867–882 (1989).
Google Scholar
Langer, N. Presupernova evolution of massive single and binary stars. Annu. Rev. Astron. Astrophys. 50, 107–164 (2012).
Google Scholar
Gal-Yam, A. et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014).
Google Scholar
Postnov, K. A. & Yungelson, L. R. The evolution of compact binary star systems. Living Rev. Relativ. 17, 3 (2014).
Google Scholar
Hirai, R., Podsiadlowski, P. & Yamada, S. Comprehensive study of ejecta-companion interaction for core-collapse supernovae in massive binaries. Astrophys. J. 864, 119 (2018).
Google Scholar
Ogata, M., Hirai, R. & Hijikawa, K. Observability of inflated companion stars after supernovae in massive binaries. Mon. Not. R. Astron. Soc. 505, 2485–2499 (2021).
Google Scholar
Dosopoulou, F. & Kalogera, V. Orbital evolution of mass-transferring eccentric binary systems. II. Secular evolution. Astrophys. J. 825, 71 (2016).
Google Scholar
Maund, J. R., Smartt, S. J., Kudritzki, R. P., Podsiadlowski, P. & Gilmore, G. F. The massive binary companion star to the progenitor of supernova 1993J. Nature 427, 129–131 (2004).
Google Scholar
Ryder, S. D. et al. Ultraviolet detection of the binary companion to the type IIb SN 2001ig. Astrophys. J. 856, 83 (2018).
Google Scholar
Maund, J. R., Pastorello, A., Mattila, S., Itagaki, K. & Boles, T. The possible detection of a binary companion to a type Ibn supernova progenitor. Astrophys. J. 833, 128 (2016).
Google Scholar
Sun, N.-C., Maund, J. R., Hirai, R., Crowther, P. A. & Podsiadlowski, P. Origins of type Ibn SNe 2006jc/2015G in interacting binaries and implications for pre-SN eruptions. Mon. Not. R. Astron. Soc. 491, 6000–6019 (2020).
Google Scholar
Folatelli, G. et al. A blue point source at the location of supernova 2011dh. Astrophys. J. Lett. 793, L22 (2014).
Google Scholar
Maund, J. R. The origin of the late-time luminosity of supernova 2011dh. Astrophys. J. 883, 86 (2019).
Google Scholar
Tauris, T. M. & Takens, R. J. Runaway velocities of stellar components originating from disrupted binaries via asymmetric supernova explosions. Astron. Astrophys. 330, 1047–1059 (1998).
Google Scholar
Portegies Zwart, S. F. The characteristics of high-velocity O and B stars which are ejected from supernovae in binary systems. Astrophys. J. 544, 437–442 (2000).
Google Scholar
Kochanek, C. S., Auchettl, K. & Belczynski, K. Stellar binaries that survive supernovae. Mon. Not. R. Astron. Soc. 485, 5394–5410 (2019).
Google Scholar
Kochanek, C. S. Supernovae producing unbound binaries and triples. Mon. Not. R. Astron. Soc. 507, 5832–5846 (2021).
Google Scholar
Hameury, J. M. A review of the disc instability model for dwarf novae, soft X-ray transients and related objects. Adv. Space Res. 66, 1004–1024 (2020).
Google Scholar
Atwood, W. B. et al. The large area telescope on the Fermi Gamma-Ray Space Telescope mission. Astrophys. J. 697, 1071–1102 (2009).
Google Scholar
Abdollahi, S. et al. Incremental Fermi Large Area Telescope fourth source catalog. Astrophys. J. Suppl. Ser. 260, 53 (2022).
Google Scholar
Ofek, E. O. & Zackay, B. Optimal matched filter in the low-number count Poisson noise regime and implications for X-ray source detection. Astronomical Journal 155, 169 (2018).
Google Scholar
Dullo, B. T., Bouquin, A. Y. K., Gil de Paz, A., Knapen, J. H. & Gorgas, J. The Black Hole mass–color relations for early- and late-type galaxies: red and blue sequences. Astrophys. J. 898, 83 (2020).
Google Scholar
Itoh, R. et al. Blazar Radio and Optical Survey (BROS): A catalog of blazar candidates showing flat radio spectrum and their optical identification in Pan-STARRS1 surveys. Astrophys. J. 901, 3 (2020).
Google Scholar
Liodakis, I., Romani, R. W., Filippenko, A. V., Kocevski, D. & Zheng, W. Probing blazar emission processes with optical/gamma-ray flare correlations. Astrophys. J. 880, 32 (2019).
Google Scholar
Matz, S. M. et al. Gamma-ray line emission from SN1987A. Nature 331, 416–418 (1988).
Google Scholar
Teegarden, B. J. et al. Resolution of the 1,238-keV γ-ray line from supernova 1987A. Nature 339, 122–123 (1989).
Google Scholar
Churazov, E. et al. Gamma rays from type Ia supernova SN 2014J. Astrophys. J. 812, 62 (2015).
Google Scholar
Ackermann, M. et al. Search for early gamma-ray production in supernovae located in a dense circumstellar medium with the Fermi LAT. Astrophys. J. 807, 169 (2015).
Google Scholar
Renault-Tinacci, N., Kotera, K., Neronov, A. & Ando, S. Search for γ-ray emission from superluminous supernovae with the Fermi-LAT. Astron. Astrophys. 611, A45 (2018).
Google Scholar
Yuan, Q. et al. Fermi Large Area Telescope detection of gamma-ray emission from the direction of supernova iPTF14hls. Astrophys. J. Lett. 854, L18 (2018).
Google Scholar
Prokhorov, D. A., Moraghan, A. & Vink, J. Search for gamma rays from SNe with a variable-size sliding-time-window analysis of the Fermi-LAT data. Mon. Not. R. Astron. Soc. 505, 1413–1421 (2021).
Google Scholar
Xi, S.-Q. et al. A serendipitous discovery of GeV gamma-ray emission from supernova 2004dj in a survey of nearby star-forming galaxies with Fermi-LAT. Astrophys. J. Lett. 896, L33 (2020).
Google Scholar
Fermi LAT Collaboration et al. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3. Science 326, 1512 (2009).
Google Scholar
Piano, G. et al. The AGILE monitoring of Cygnus X-3: transient gamma-ray emission and spectral constraints. Astron. Astrophys. 545, A110 (2012).
Google Scholar
Modjaz, M. et al. Optical spectra of 73 stripped-envelope core-collapse supernovae. Astron. J. 147, 99 (2014).
Google Scholar
Hunter, D. J. et al. Extensive optical and near-infrared observations of the nearby, narrow-lined type Ic SN 2007gr: days 5 to 415. Astron. Astrophys. 508, 371–389 (2009).
Google Scholar
Taubenberger, S. et al. Nebular emission-line profiles of Type Ib/c supernovae – probing the ejecta asphericity. Mon. Not. R. Astron. Soc. 397, 677–694 (2009).
Google Scholar
Jerkstrand, A. et al. Long-duration superluminous supernovae at late times. Astrophys. J. 835, 13 (2017).
Google Scholar