Strange India All Strange Things About India and worldStrange India All Strange Things About India and world


  • 1.

    Haire, R. G. in The Chemistry of the Actinide and Transactinide Elements (eds Morss, L. R. et. al) 1577–1620 (Springer, 2011).

  • 2.

    Kelley, M. P. et al. Bond covalency and oxidation state of actinide ions complexed with therapeutic chelating agent 3,4,3-LI(1,2-HOPO). Inorg. Chem. 57, 5352–5363 (2018).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Hulet, E. K. Chemistry of the elements einsteinium through element-105. Radiochim. Acta 32, 7–24 (1983).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Pyykko, P. Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594 (1988).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Ferguson, D. E. ORNL transuranium program: the production of transuranium elements. Nucl. Sci. Eng. 17, 435–437 (1963).

    Article 

    Google Scholar 

  • 6.

    Meierfrankenfeld, D., Bury, A. & Thoennessen, M. Discovery of scandium, titanium, mercury, and einsteinium isotopes. At. Data Nucl. Data Tables 97, 134–151 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Thompson, S. G., Harvey, B. G., Choppin, G. R. & Seaborg, G. T. Chemical properties of elements 99 and 100. J. Am. Chem. Soc. 76, 6229–6236 (1954).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Choppin, G. R., Harvey, B. G. & Thompson, S. G. A new eluant for the separation of the actinide elements. J. Inorg. Nucl. Chem. 2, 66–68 (1956).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Horwitz, E. P., Bloomquist, C. A. A. & Henderson, D. J. The extraction chromatography of californium, einsteinium, and fermium with di(2-ethylhexyl)orthophosphoric acid. J. Inorg. Nucl. Chem. 31, 1149–1166 (1969).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Peterson, J. R. et al. Determination of the first ionization potential of einsteinium by resonance ionization mass spectroscopy (RIMS). J. Alloys Compd. 271–273, 876–878 (1998).

    Article 

    Google Scholar 

  • 11.

    Haire, R. G. & Baybarz, R. D. Identification and analysis of einsteinium sesquioxide by electron diffraction. J. Inorg. Nucl. Chem. 35, 489–496 (1973).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Fellows, R. L., Peterson, J. R., Noé, M., Young, J. P. & Haire, R. G. X-ray diffraction and spectroscopic studies of crystalline einsteinium(III) bromide, 253EsBr3. Inorg. Nucl. Chem. Lett. 11, 737–742 (1975).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Gutmacher, R. G., Evans, J. E. & Hulet, E. K. Sensitive spark lines of einsteinium. J. Opt. Soc. Am. 57, 1389–1390 (1967).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Nugent, L. J., Baybarz, R. D., Werner, G. K. & Friedman, H. A. Intramolecular energy transfer and sensitized luminescence in an einsteinium β-diketone chelate and the lower lying electronic energy levels of Es(III). Chem. Phys. Lett. 7, 179–182 (1970).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Harmon, H. D., Peterson, J. R. & McDowell, W. J. The stability constants of the monochloro complexes of Bk(III) and Es(III). Inorg. Nucl. Chem. Lett. 8, 57–63 (1972).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Harmon, H. D., Peterson, J. R., McDowell, W. J. & Coleman, C. F. The tetrad effect: the thiocyanate complex stability constants of some trivalent actinides. J. Inorg. Nucl. Chem. 34, 1381–1397 (1972).

    CAS 
    Article 

    Google Scholar 

  • 17.

    McDowell, W. J. & Coleman, C. F. The sulfate complexes of some trivalent transplutonium actinides and europium. J. Inorg. Nucl. Chem. 34, 2837–2850 (1972).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Kelley, M. P. et al. Revisiting complexation thermodynamics of transplutonium elements up to einsteinium. Chem. Commun. 54, 10578–10581 (2018).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Bearden, J. A. & Burr, A. F. Reevaluation of X-ray atomic energy levels. Rev. Mod. Phys. 39, 125–142 (1967).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Daumann, L. J. et al. New insights into structure and luminescence of EuIII and SmIII complexes of the 3,4,3-LI(1,2-HOPO) ligand. J. Am. Chem. Soc. 137, 2816–2819 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Carnall, W. T., Cohen, D., Fields, P. R., Sjoblom, R. K. & Barnes, R. F. Electronic energy level and intensity correlations in the spectra of the trivalent actinide aquo ions. I. Es3+. J. Chem. Phys. 59, 1785–1789 (1973).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Beitz, J. V., Wester, D. W. & Williams, C. W. 5f state interaction with inner coordination sphere ligands: Es3+ ion fluorescence in aqueous and organic phases. J. Less Common Met. 93, 331–338 (1983).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Barbanel, A. Nephelauxetic effect and hypersensitivity in the optical spectra of actinides. Radiochim. Acta 78, 91–95 (1997).

    CAS 

    Google Scholar 

  • 24.

    Edelstein, N. M., Klenze, R., Fanghänel, T. & Hubert, S. Optical properties of Cm(III) in crystals and solutions and their application to Cm(III) speciation. Coord. Chem. Rev. 250, 948–973 (2006).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Moore, K. T. et al. Failure of Russell-Saunders coupling in the 5f states of plutonium. Phys. Rev. Lett. 90, 196404 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Lundberg, D. & Persson, I. The size of actinoid(III) ions – structural analysis vs. common misinterpretations. Coord. Chem. Rev. 318, 131–134 (2016).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Sturzbecher-Hoehne, M., Yang, P., D’Aleo, A. & Abergel, R. J. Intramolecular sensitization of americium luminescence in solution: shining light on short-lived forbidden 5f transitions. Dalton Trans. 45, 9912–9919 (2016).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Booth, C. H. & Hu, Y.-J. Confirmation of standard error analysis techniques applied to EXAFS using simulations. J. Phys. Conf. Ser. 190, 012028 (2009).

    Article 

    Google Scholar 

  • 29.

    Abergel, R. J. et al. Biomimetic actinide chelators: an update on the preclinical development of the orally active hydroxypyridonate decorporation agents 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO). Health Phys. 99, 401–407 (2010).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Booth, C. H. RSXAP Analysis Package (Berkeley, 2016).

  • 31.

    Li, G. G., Bridges, F. & Booth, C. H. X-ray-absorption fine-structure standards: a comparison of experiment and theory. Phys. Rev. B 52, 6332–6348 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Ankudinov, A. L., Ravel, B., Rehr, J. J. & Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Rehr, J. J., Kas, J. J., Vila, F. D., Prange, M. P. & Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12, 5503–5513 (2010).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Ahmad, I., Kondev, F. G., Koenig, Z. M., McHarris, W. C. & Yates, S. W. Two-quasiparticle states in 250Bk studied by decay scheme and transfer reaction spectroscopy. Phys. Rev. C 77, 054302 (2008).

    ADS 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *