Strange IndiaStrange India


  • 1.

    De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 2.

    Sturm, E. V. & Cölfen, H. Mesocrystals: past, presence, future. Crystals 7, 207 (2017).

    Article 
    CAS 

    Google Scholar 

  • 3.

    Cho, K. S., Talapin, D. V., Gaschler, W. & Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 7140–7147 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Yang, J. et al. Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nat. Mater. 18, 970–976 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Whitham, K. et al. Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 15, 557–563 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Boneschanscher, M. P. et al. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 344, 1377–1380 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Banfield, J. F., Welch, S. A., Zhang, H., Ebert, T. T. & Penn, R. L. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751–754 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Penn, R. L. & Banfield, J. F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969–971 (1998).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Cölfen, H. & Antonietti, M. Mesocrystals and Nonclassical Crystallization (Wiley, 2008).

  • 10.

    Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Liu, L. et al. Connecting energetics to dynamics in particle growth by oriented attachment using real-time observations. Nat. Commun. 11, 1045 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Nielsen, M. H., Aloni, S. & De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345, 1158–1162 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Van Driessche, A. E. et al. The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 336, 69–72 (2012).

    ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Yuwono, V. M., Burrows, N. D., Soltis, J. A. & Penn, R. L. Oriented aggregation: formation and transformation of mesocrystal intermediates revealed. J. Am. Chem. Soc. 132, 2163–2165 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Baumgartner, J. et al. Nucleation and growth of magnetite from solution. Nat. Mater. 12, 310–314 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Navrotsky, A., Mazeina, L. & Majzlan, J. Size-driven structural and thermodynamic complexity in iron oxides. Science 319, 1635–1638 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Cornell, R. M. & Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley-VCH, 2003).

  • 19.

    Fischer, W. R. The formation of hematite from amorphous iron(III) hydroxide. Clays Clay Miner. 23, 33–37 (1975).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Frandsen, C. et al. Aggregation-induced growth and transformation of β-FeOOH nanorods to micron-sized α-Fe2O3 spindles. CrystEngComm 16, 1451–1458 (2014).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Sugimoto, T., Itoh, H. & Mochida, T. Shape control of monodisperse hematite particles by organic additives in the gel–sol system. J. Colloid Interface Sci. 205, 42–52 (1998).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Sposito, G. Scaling invariance of the von Smoluchowski rate law. Colloids Surf. A 120, 101–110 (1997).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Tan, S. F. et al. In situ kinetic and thermodynamic growth control of Au–Pd core–shell nanoparticles. J. Am. Chem. Soc. 140, 11680–11685 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Smith, B. J. et al. Colloidal covalent organic frameworks. ACS Cent. Sci. 3, 58–65 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Xin, H. L. & Zheng, H. In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett. 12, 1470–1474 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Nielsen, M. H. et al. Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc. Microanal. 20, 425–436 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Cheng, Y. et al. Near surface nucleation and particle mediated growth of colloidal Au nanocrystals. Nanoscale 10, 11907–11912 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Lee, S. O., Tran, T., Jung, B. H., Kim, S. J. & Kim, M. J. Dissolution of iron oxide using oxalic acid. Hydrometallurgy 87, 91–99 (2007).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Loring, J. S., Simanova, A. A. & Persson, P. Highly mobile iron pool from a dissolution–readsorption process. Langmuir 24, 7054–7057 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Zhang, Y., Kallay, N. & Matijevic, E. Interaction of metal hydrous oxides with chelating agents. 7. Hematite–oxalic acid and –citric acid systems. Langmuir 1, 201–206 (1985).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Situm, A., Rahman, M. A., Allen, N., Kabengi, N. & Al-Abadleh, H. A. ATR-FTIR and flow microcalorimetry studies on the initial binding kinetics of arsenicals at the organic–hematite interface. J. Phys. Chem. A 121, 5569–5579 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Hu, Q. et al. The thermodynamics of calcite nucleation at organic interfaces: classical vs. non-classical pathways. Faraday Discuss. 159, 509–523 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Deng, N. et al. Organic–mineral interfacial chemistry drives heterogeneous nucleation of Sr-rich (Bax, Sr1−x)SO4 from undersaturated solution. Proc. Natl Acad. Sci. USA 116, 13221–13226 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Jin, B., Sushko, M. L., Liu, Z., Jin, C. & Tang, R. In situ liquid cell TEM reveals bridge-induced contact and fusion of Au nanocrystals in aqueous solution. Nano Lett. 18, 6551–6556 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Söngen, H. et al. Resolving point defects in the hydration structure of calcite (104) with three-dimensional atomic force microscopy. Phys. Rev. Lett. 120, 116101 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Liu, Z. et al. Intrinsic dipole-field-driven mesoscale crystallization of core-shell ZnO mesocrystal microspheres. J. Am. Chem. Soc. 131, 9405–9412 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Zhang, Z. et al. Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Adv. Mater. 17, 42–47 (2005).

    Article 
    CAS 

    Google Scholar 

  • 38.

    Ye, J. et al. Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J. Am. Chem. Soc. 133, 933–940 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Laramy, C. R. et al. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles. Chem. Phys. Lett. 683, 389–392 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 40.

    Chen, X., Noh, K. W., Wen, J. G. & Dillon, S. J. In situ electrochemical wet cell transmission electron microscopy characterization of solid–liquid interactions between Ni and aqueous NiCl2. Acta Mater. 60, 192–198 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Egglseder, M. S. et al. Tiny particles building huge ore deposits – particle-based crystallisation in banded iron formation-hosted iron ore deposits (Hamersley Province, Australia). Ore Geol. Rev. 104, 160–174 (2019).

    Article 

    Google Scholar 

  • 42.

    Lin, X., Heaney, P. & Post, J. E. Iridescence in metamorphic “rainbow” hematite. Gems Gemology 54, 28–39 (2018).

    Google Scholar 

  • 43.

    Anand, R. R. & Gilkes, R. J. Variations in the properties of iron oxides within individual specimens of lateritic duricrust. Soil Res. 25, 287–302 (1987).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Grotzinger, J. P. & Knoll, A. H. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27, 313–358 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Zhou, L. & O’Brien, P. Mesocrystals: a new class of solid materials. Small 4, 1566–1574 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Schwertmann, U. & Cornell, R. M. Iron Oxides in the Laboratory (VCH, 1991).

  • 47.

    Soltis, J. A., Feinberg, J. M., Gilbert, B. & Penn, R. L. Phase transformation and particle-mediated growth in the formation of hematite from 2-line ferrihydrite. Cryst. Growth Des. 16, 922–932 (2016).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Sugimoto, T., Muramatsu, A., Sakata, K. & Shindo, D. Characterization of hematite particles of different shapes. J. Colloid Interface Sci. 158, 420–428 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 49.

    Zhu, G., Reiner, H., Colfen, H. & De Yoreo, J. J. Addressing some of the technical challenges associated with liquid phase S/TEM studies of particle nucleation, growth and assembly. Micron 118, 35–42 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Zhu, G. et al. Atomic resolution liquid-cell transmission electron microscopy investigations of the dynamics of nanoparticles in ultrathin liquids. Chem. Commun. 49, 10944–10946 (2013).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Loh, N. D. et al. Multistep nucleation of nanocrystals in aqueous solution. Nat. Chem. 9, 77–82 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Lu, Y. et al. Modifying surface chemistry of metal oxides for boosting dissolution kinetics in water by liquid cell electron microscopy. ACS Nano 11, 8018–8025 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Huang, X., Hou, X., Song, F., Zhao, J. & Zhang, L. Ascorbate induced facet dependent reductive dissolution of hematite nanocrystals. J. Phys. Chem. C 121, 1113–1121 (2017).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Sushko, M. L. & Rosso, K. M. The origin of facet selectivity and alignment in anatase TiO2 nanoparticles in electrolyte solutions: implications for oriented attachment in metal oxides. Nanoscale 8, 19714–19725 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Meng, D., Zheng, B., Lin, G. & Sushko, M. L. Numerical solution of 3D Poisson–Nernst–Planck equations coupled with classical density functional theory for modeling ion and electron transport in a confined environment. Commun. Comput. Phys. 16, 1298–1322 (2014).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 56.

    Zhang, X. et al. Direction-specific van der Waals attraction between rutile TiO2 nanocrystals. Science 356, 434–437 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Wu, J. & Li, Z. Density-functional theory for complex fluids. Annu. Rev. Phys. Chem. 58, 85–112 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 60.

    Mosey, N. J., Liao, P. & Carter, E. A. Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. J. Chem. Phys. 129, 014103 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 61.

    Stefánsson, A. Iron (III) hydrolysis and solubility at 25 degrees C. Environ. Sci. Technol. 41, 6117–6123 (2007).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 62.

    Legg, B. A. et al. A model for nucleation when nuclei are nonstoichiometric: understanding the precipitation of iron oxyhydroxide nanoparticles. Cryst. Growth Des. 16, 5726–5737 (2016).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Elhadj, S., Chernov, A. A. & De Yoreo, J. J. Solvent-mediated repair and patterning of surfaces by AFM. Nanotechnology 19, 105304 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *