Strange India All Strange Things About India and world


  • 1.

    Squair, J. W., Phillips, A. A., Harmon, M. & Krassioukov, A. V. Emergency management of autonomic dysreflexia with neurologic complications. Can. Med. Assoc. J. 188, 1100–1103 (2016).

    Article 

    Google Scholar 

  • 2.

    Readdy, W. J. et al. Complications and outcomes of vasopressor usage in acute traumatic central cord syndrome. J. Neurosurg. Spine 23, 574–580 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 3.

    Inoue, T., Manley, G. T., Patel, N. & Whetstone, W. D. Medical and surgical management after spinal cord injury: vasopressor usage, early surgerys, and complications. J. Neurotrauma 31, 284–291 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 4.

    Squair, J. W. et al. Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology 89, 1660–1667 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Squair, J. W. et al. Empirical targets for acute haemodynamic management of individuals with spinal cord injury. Neurology 93, e1205–e1211 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Cragg, J. J., Noonan, V. K., Krassioukov, A. & Borisoff, J. Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology 81, 723–728 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Wu, J.-C. et al. Increased risk of stroke after spinal cord injury: a nationwide 4-year follow-up cohort study. Neurology 78, 1051–1057 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Illman, A., Stiller, K. & Williams, M. The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury. Spinal Cord 38, 741–747 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Carlozzi, N. E. et al. Impact of blood pressure dysregulation on health-related quality of life in persons with spinal cord injury: development of a conceptual model. Arch. Phys. Med. Rehabil. 94, 1721–1730 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Furlan, J. C., Fehlings, M. G., Shannon, P., Norenberg, M. D. & Krassioukov, A. V. Descending vasomotor pathways in humans: correlation between axonal preservation and cardiovascular dysfunction after spinal cord injury. J. Neurotrauma 20, 1351–1363 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Capogrosso, M. et al. A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539, 284–288 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Wagner, F. B. et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563, 65–71 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Saadoun, S., Chen, S. & Papadopoulos, M. C. Intraspinal pressure and spinal cord perfusion pressure predict neurological outcome after traumatic spinal cord injury. J. Neurol. Neurosurg. Psychiatry 88, 452–453 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Vale, F. L., Burns, J., Jackson, A. B. & Hadley, M. N. Combined medical and surgical treatment after acute spinal cord injury: results of a prospective pilot study to assess the merits of aggressive medical resuscitation and blood pressure management. J. Neurosurg. 87, 239–246 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Rawlings, A. M. et al. Association of orthostatic hypotension with incident dementia, stroke, and cognitive decline. Neurology 91, e759–e768 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Phillips, A. A., Krassioukov, A. V., Ainslie, P. N. & Warburton, D. E. R. Baroreflex function after spinal cord injury. J. Neurotrauma 29, 2431–2445 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Phillips, A. A., Krassioukov, A. V., Ainslie, P. N. & Warburton, D. E. R. Perturbed and spontaneous regional cerebral blood flow responses to changes in blood pressure after high-level spinal cord injury: the effect of midodrine. J. Appl. Physiol. 116, 645–653 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Courtine, G. et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 12, 1333–1342 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Angeli, C. A. et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N. Engl. J. Med. 379, 1244–1250 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Gill, M. L. et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat. Med. 24, 1677–1682 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Wenger, N. et al. Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat. Med. 22, 138–145 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    West, C. R. et al. Association of epidural stimulation with cardiovascular function in an individual with spinal cord injury. JAMA Neurol. 75, 630–632 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Harkema, S. J. et al. Epidural spinal cord stimulation training and sustained recovery of cardiovascular function in individuals with chronic cervical spinal cord injury. JAMA Neurol. 75, 1569–1571 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Harkema, S. J. et al. Normalization of blood pressure with spinal cord epidural stimulation after severe spinal cord injury. Front. Hum. Neurosci. 12, 83 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Darrow, D. et al. Epidural spinal cord stimulation facilitates immediate restoration of dormant motor and autonomic supraspinal pathways after chronic neurologically complete spinal cord injury. J. Neurotrauma 36, 2325–2336 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Grimm, D. et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J. Virol. 82, 5887–5911 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Witten, I. B. et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72, 721–733 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protocols 9, 1682–1697 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Strack, A. M., Sawyer, W. B., Marubio, L. M. & Loewy, A. D. Spinal origin of sympathetic preganglionic neurons in the rat. Brain Res. 455, 187–191 (1988).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Capogrosso, M. et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J. Neurosci. 33, 19326–19340 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Gradinaru, V., Thompson, K. R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Phillips, A. A., Elliott, S. L., Zheng, M. M. Z. & Krassioukov, A. V. Selective alpha adrenergic antagonist reduces severity of transient hypertension during sexual stimulation after spinal cord injury. J. Neurotrauma 32, 392–396 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Beauparlant, J. et al. Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Brain 136, 3347–3361 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Minev, I. R. et al. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Formento, E. et al. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat. Neurosci. 21, 1728–1741 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Cornwell, W. K. III et al. Restoration of pulsatile flow reduces sympathetic nerve activity among individuals with continuous-flow left ventricular assist devices. Circulation 132, 2316–2322 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Purohit, S. N., Cornwell, W. K. III, Pal, J. D., Lindenfeld, J. & Ambardekar, A. V. Living without a pulse: the vascular implications of continuous-flow left ventricular assist devices. Circ. Heart Fail. 11, e004670 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Cheng, A., Williamitis, C. A. & Slaughter, M. S. Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: is there an advantage to pulsatility? Ann. Cardiothorac. Surg. 3, 573–581 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Saleem, S. et al. Wavelet decomposition analysis is a clinically relevant strategy to evaluate cerebrovascular buffering of blood pressure after spinal cord injury. Am. J. Physiol. Heart Circ. Physiol. 314, H1108–H1114 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Phillips, A. A., Warburton, D. E. R., Ainslie, P. N. & Krassioukov, A. V. Regional neurovascular coupling and cognitive performance in those with low blood pressure secondary to high-level spinal cord injury: improved by alpha-1 agonist midodrine hydrochloride. J. Cereb. Blood Flow Metab. 34, 794–801 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Courtine, G. & Bloch, J. Defining ecological strategies in neuroprosthetics. Neuron 86, 29–33 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Phillips, A. A. & Krassioukov, A. V. Contemporary cardiovascular concerns after spinal cord injury: mechanisms, maladaptations, and management. J. Neurotrauma 32, 1927–1942 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Phillips, A. A. & Krassioukov, A. V. in Neurological Aspects of Spinal Cord Injury (eds Weidner, N. et al.) 325–361 (Springer International Publishing, 2017).

  • 44.

    Richardson, R. R., Cerullo, L. J. & Meyer, P. R. Autonomic hyper-reflexia modulated by percutaneous epidural neurostimulation: a preliminary report. Neurosurgery 4, 517–520 (1979).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Ramsey, J. B. G. et al. Care of rats with complete high-thoracic spinal cord injury. J. Neurotrauma 27, 1709–1722 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 46.

    Anderson, M. A. et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561, 396–400 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Squair, J. W. et al. High thoracic contusion model for the investigation of cardiovascular function after spinal cord injury. J. Neurotrauma 34, 671–684 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 48.

    Asboth, L. et al. Cortico-reticulo-spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat. Neurosci. 21, 576–588 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Scheff, S. W., Rabchevsky, A. G., Fugaccia, I., Main, J. A. & Lumpp, J. E., Jr. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J. Neurotrauma 20, 179–193 (2003).

    PubMed 
    Article 

    Google Scholar 

  • 50.

    van den Brand, R. et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336, 1182–1185 (2012).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 51.

    Krassioukov, A. V. & Weaver, L. C. Connections between the pontine reticular formation and rostral ventrolateral medulla. Am. J. Physiol. 265, H1386–H1392 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Ueno, M., Ueno-Nakamura, Y., Niehaus, J., Popovich, P. G. & Yoshida, Y. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat. Neurosci. 19, 784–787 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Sundt, D., Gamper, N. & Jaffe, D. B. Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study. J. Neurophysiol. 114, 3140–3153 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    McIntyre, C. C. & Grill, W. M. Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. J. Neurophysiol. 88, 1592–1604 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Pan, C. et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Methods 13, 859–867 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Lee, E. et al. ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci. Rep. 6, 18631 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Bria, A. & Iannello, G. TeraStitcher – a tool for fast automatic 3D-stitching of teravoxel-sized microscopy images. BMC Bioinformatics 13, 316 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Rizk, A. et al. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh. Nat. Protocols 9, 586–596 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Kirshblum, S. C. et al. International standards for neurological classification of spinal cord injury (revised 2011). J. Spinal Cord Med. 34, 535–546 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Bogert, L. W. J. & van Lieshout, J. J. Non-invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp. Physiol. 90, 437–446 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Jansen, J. R. et al. A comparison of cardiac output derived from the arterial pressure wave against thermodilution in cardiac surgery patients. Br. J. Anaesth. 87, 212–222 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Westerhof, B. E., Gisolf, J., Stok, W. J., Wesseling, K. H. & Karemaker, J. M. Time-domain cross-correlation baroreflex sensitivity: performance on the EUROBAVAR data set. J. Hypertens. 22, 1371–1380 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Wieling, W., Ganzeboom, K. S. & Saul, J. P. Reflex syncope in children and adolescents. Heart 90, 1094–1100 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Whinnett, Z. I. et al. Multicenter randomized controlled crossover trial comparing haemodynamic optimization against echocardiographic optimization of av and VV delay of cardiac resynchronization therapy: the BRAVO trial. JACC Cardiovasc. Imaging 12, 1407–1416 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Notay, K. et al. Validity and reliability of measuring resting muscle sympathetic nerve activity using short sampling durations in healthy humans. J. Appl. Physiol. 121, 1065–1073 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Incognito, A. V. et al. Evidence for differential control of muscle sympathetic single units during mild sympathoexcitation in young, healthy humans. Am. J. Physiol. Heart Circ. Physiol. 316, H13–H23 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Wallin, B. G. et al. Sympathetic single axonal discharge after spinal cord injury in humans: activity at rest and after bladder stimulation. Spinal Cord 52, 434–438 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Incognito, A. V. et al. Pharmacological assessment of the arterial baroreflex in a young healthy obese male with extremely low baseline muscle sympathetic nerve activity. Clin. Auton. Res. 28, 593–595 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *