Strange India All Strange Things About India and world


  • 1.

    Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. R. Soc. Lond. B 279, 4724–4733 (2012).

    CAS 

    Google Scholar 

  • 2.

    Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 3.

    Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Palkopoulou, E. et al. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr. Biol. 25, 1395–1400 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Weir, J. T. & Schluter, D. Ice sheets promote speciation in boreal birds. Proc. R. Soc. Lond. B 271, 1881–1887 (2004).

    Google Scholar 

  • 7.

    Lister, A. M. The impact of Quaternary Ice Ages on mammalian evolution. Phil. Trans. R. Soc. Lond. B 359, 221–241 (2004).

    Google Scholar 

  • 8.

    Lister, A. M., Sher, A. V., van Essen, H. & Wei, G. The pattern and process of mammoth evolution in Eurasia. Quat. Int. 126–128, 49–64 (2005).

    Google Scholar 

  • 9.

    Werdelin, L. & Sanders, W. J. (eds) Cenozoic Mammals of Africa (Univ. California Press, 2010).

  • 10.

    Lister, A. M. & Sher, A. V. Evolution and dispersal of mammoths across the Northern Hemisphere. Science 350, 805–809 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Repenning, C. A. Allophaiomys and the Age of the Olyor Suite, Krestovka Sections, Yakutia (US Government Printing Office, 1992).

  • 12.

    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010).

    PubMed 

    Google Scholar 

  • 14.

    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, db.prot5448 (2010).

    Google Scholar 

  • 15.

    Palkopoulou, E. et al. A comprehensive genomic history of extinct and living elephants. Proc. Natl Acad. Sci. USA 115, E2566–E2574 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Rohland, N. et al. Proboscidean mitogenomics: chronology and mode of elephant evolution using mastodon as outgroup. PLoS Biol. 5, e207 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Chang, D. et al. The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis. Sci. Rep. 7, 44585 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Pečnerová, P. et al. Mitogenome evolution in the last surviving woolly mammoth population reveals neutral and functional consequences of small population size. Evol. Lett. 1, 292–303 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Barnes, I. et al. Genetic structure and extinction of the woolly mammoth, Mammuthus primigenius. Curr. Biol. 17, 1072–1075 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Leppälä, K., Nielsen, S. V. & Mailund, T. admixturegraph: an R package for admixture graph manipulation and fitting. Bioinformatics 33, 1738–1740 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Skov, L. et al. Detecting archaic introgression using an unadmixed outgroup. PLoS Genet. 14, e1007641 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Lynch, V. J. et al. Elephantid genomes reveal the molecular bases of woolly mammoth adaptations to the Arctic. Cell Rep. 12, 217–228 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Mallet, J. Hybrid speciation. Nature 446, 279–283 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Lucas, S. G., Morgan, G. S., Love, D. W. & Connell, S. D. The first North American mammoths: taxonomy and chronology of early Irvingtonian (Early Pleistocene) Mammuthus from New Mexico. Quat. Int. 443, 2–13 (2017).

    Google Scholar 

  • 28.

    Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protocols 8, 737–748 (2013).

    PubMed 

    Google Scholar 

  • 29.

    John, J. S. SeqPrep: tool for stripping adaptors and/or merging paired reads with overlap into single reads. GitHub https://github.com/jstjohn/SeqPrep (2011).

  • 30.

    Schubert, M. et al. Improving ancient DNA read mapping against modern reference genomes. BMC Genomics 13, 178 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  • 32.

    Feuerborn, T. R. et al. Competitive mapping allows for the identification and exclusion of human DNA contamination in ancient faunal genomic datasets. BMC Genomics 21, 844 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0, 2013–2015. http://www.repeatmasker.org (2015).

  • 38.

    Green, R. E. et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Meyer, M. et al. Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution. eLife 6, e25413 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–314 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Gill, M. S. et al. Improving Bayesian population dynamics inference: a coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Liu, L. et al. Genomic analysis on pygmy hog reveals extensive interbreeding during wild boar expansion. Nat. Commun. 10, 1992 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Frith, M. C., Hamada, M. & Horton, P. Parameters for accurate genome alignment. BMC Bioinformatics 11, 80 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *