Strange India All Strange Things About India and world


  • 1.

    Scandolo, S., Chiarotti, G. L. & Tosatti, E. SC4: a metallic phase of carbon at terapascal pressures. Phys. Rev. B 53, 5051–5054 (1996).

    ADS 
    CAS 

    Google Scholar 

  • 2.

    Sun, J., Klug, D. D. & Martoňák, R. Structural transformations in carbon under extreme pressure: beyond diamond. J. Chem. Phys. 130, 194512 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Martinez-Canales, M., Pickard, C. J. & Needs, R. J. Thermodynamically stable phases of carbon at multiterapascal pressures. Phys. Rev. Lett. 108, 045704 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Madhusudhan, N., Lee, K. K. M. & Mousis, O. A possible carbon-rich interior in super-earth 55 Cancri e. Astrophys. J. 759, L40 (2012).

    ADS 

    Google Scholar 

  • 5.

    Mashian, N. & Loeb, A. CEMP stars: possible hosts to carbon planets in the early universe. Mon. Not. R. Astron. Soc. 460, 2482–2491 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 6.

    Frondel, C. & Marvin, U. B. Lonsdaleite, a hexagonal polymorph of diamond. Nature 214, 587–589 (1967).

    ADS 
    CAS 

    Google Scholar 

  • 7.

    Narayan, J. & Bhaumik, A. Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 118, 215303 (2015).

    ADS 

    Google Scholar 

  • 8.

    Johnston, R. L. & Hoffmann, R. Superdense carbon, C8: supercubane or analog of γ-silicon? J. Am. Chem. Soc. 111, 810–819 (1989).

    CAS 

    Google Scholar 

  • 9.

    Mailhiot, C. & McMahan, A. K. Atmospheric-pressure stability of energetic phases of carbon. Phys. Rev. B 44, 11578–11591 (1991).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Oganov, A. R., Hemley, R. J., Hazen, R. M. & Jones, A. P. Structure, bonding, and mineralogy of carbon at extreme conditions. Rev. Mineral. Geochem. 75, 47–77 (2013).

    CAS 

    Google Scholar 

  • 12.

    Yin, M. T. & Cohen, M. L. Will diamond transform under megabar pressures? Phys. Rev. Lett. 50, 2006–2009 (1983).

    ADS 
    CAS 

    Google Scholar 

  • 13.

    Biswas, R. & Martin, R. M., Needs, R. J. & Nielsen, O. H. Stability and electronic proper- ties of complex structures of silicon and carbon under pressure: density-functional calculations. Phys. Rev. B 35, 9559–9568 (1987).

    ADS 
    CAS 

    Google Scholar 

  • 14.

    Fahy, S. & Louie, S. G. High-pressure structural and electronic properties of carbon. Phys. Rev. B 36, 3373–3385 (1987).

    ADS 
    CAS 

    Google Scholar 

  • 15.

    Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B. & Abakumov, A. M. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3, 1163 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Wu, H., Luo, X., Wen, L., Sun, H. & Chen, C. Extreme static compression of carbon to terapascal pressures. Carbon 144, 161–170 (2019).

    CAS 

    Google Scholar 

  • 17.

    Eggert, J. H. et al. Melting temperature of diamond at ultrahigh pressure. Nat. Phys. 6, 40–43 (2010).

    CAS 

    Google Scholar 

  • 18.

    Swift, D. C. Numerical solution of shock and ramp compression for general material properties. J. Appl. Phys. 104, 073536 (2008).

    ADS 

    Google Scholar 

  • 19.

    Smith, R. F. et al. Ramp compression of diamond to five terapascals. Nature 511, 330–333 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Knudson, M. D., Desjarlais, M. P. & Dolan, D. H. Shock-wave exploration of the high-pressure phases of carbon. Science 322, 1822–1825 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Barrios, M. A. et al. X-ray area backlighter development at the National Ignition Facility. Rev. Sci. Instrum. 85, 11D502 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Coppari, F. et al. Optimized x-ray sources for x-ray diffraction measurements at the Omega Laser Facility. Rev. Sci. Instrum. 90, 125113 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Wark, J. S., Whitlock, R. R., Hauer, A. A., Swain, J. E. & Solone, P. J. Subnanosecond x-ray diffraction from laser-shocked crystals. Phys. Rev. B 40, 5705–5714 (1989).

    ADS 
    CAS 

    Google Scholar 

  • 24.

    Rygg, J. R. et al. Powder diffraction from solids in the terapascal regime. Rev. Sci. Instrum. 83, 113904 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Rygg, J. R. et al. X-ray diffraction at the National Ignition Facility. Rev. Sci. Instrum. 91, 043902 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Celliers, P. M. et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility. Rev. Sci. Instrum. 75, 4916–4929 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 27.

    Rothman, S. D. et al. Measurement of the principal isentropes of lead and lead–antimony alloy to ~400 kbar by quasi-isentropic compression. J. Phys. D 38, 733–740 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 28.

    Bradley, D. K. et al. Diamond at 800 GPa. Phys. Rev. Lett. 102, 075503 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Coppari, F. et al. Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nat. Geosci. 6, 926–929 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 30.

    Nelmes, R. J., McMahon, M. I., Wright, N. G., Allan, D. R. & Loveday, J. S. Stability and crystal structure of BC8 germanium. Phys. Rev. B 48, 9883–9886 (1993).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Kurakevych, O. O. et al. Synthesis of bulk BC8 silicon allotrope by direct transformation and reduced-pressure chemical pathways. Inorg. Chem. 55, 8943–8950 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Turneaure, S. J., Sharma, S. M., Volz, T. J., Winey, J. M. & Gupta, Y. M. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Sci. Adv. 3, eaao3561 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    McWilliams, R. S. et al. Strength effects in diamond under shock compression from 0.1 to 1 TPa. Phys. Rev. B 81, 014111 (2010).

    ADS 

    Google Scholar 

  • 34.

    Orlikowski, D., Correa, A. A., Schwegler, E. & Klepeis, J. E. A Steinberg-Guinan model for high-pressure carbon: diamond phase. AIP Conf. Proc. 955, 247–250 (2007).

    ADS 
    CAS 

    Google Scholar 

  • 35.

    Swift, D. C. et al. Equation of state and strength of diamond in high pressure ramp loading. Preprint at https://arxiv.org/abs/2004.03071 (2020).

  • 36.

    Lang, J. M., Winey, J. M. & Gupta, Y. M. Strength and deformation of shocked diamond single crystals: orientation dependence. Phys. Rev. B 97, 104106 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Taylor, G. I. & Quinney, H. The latent energy remaining in a metal after cold working. Proc. R. Soc. Lond. A 143, 307–326 (1934).

    ADS 

    Google Scholar 

  • 38.

    Suggit, M. J. et al. Nanosecond white-light Laue diffraction measurements of dislocation microstructure in shock-compressed single-crystal copper. Nat. Commun. 3, 1224 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Heighway, P. G. et al. Nonisentropic release of a shocked solid. Phys. Rev. Lett. 123, 245501 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 40.

    Ping, Y. et al. Solid iron compressed up to 560 GPa. Phys. Rev. Lett. 111, 065501 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Murphy, W. J., Higginbotham, A., Wark, J. S. & Park, N. Molecular dynamics simulations of the Debye-Waller effect in shocked copper. Phys. Rev. B 78, 014109 (2008).

    ADS 

    Google Scholar 

  • 42.

    Ertel, K. et al. DiPOLE: A scalable laser architecture for pumping multi-Hz PW systems. Proc. SPIE 8780, 288–292 (2013).

    Google Scholar 

  • 43.

    Pellegrini, C. X-ray free-electron lasers: from dreams to reality. Phys. Scr. T169, 014004 (2016).

    ADS 

    Google Scholar 

  • 44.

    McBride, E. E. et al. Setup for meV-resolution inelastic x-ray scattering measurements and x-ray diffraction at the matter in extreme conditions endstation at the Linac Coherent Light Source. Rev. Sci. Instrum. 89, 10F104 (2018)

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Descamps, A. et al. An approach for the measurement of the bulk temperature of single crystal diamond using an X-ray free electron laser. Sci. Rep. 10, 14564 (2020).

  • 46.

    Wang, X., Scandolo, S. & Car, R. Carbon phase diagram from ab initio molecular dynamics. Phys. Rev. Lett. 95, 185701 (2005).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Correa, A. A., Bonev, S. A. & Galli, G. Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory. Proc. Natl Acad. Sci. USA 103, 1204–1208 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Benedict, L. X. et al. Multiphase equation of state for carbon addressing high pressures and temperatures. Phys. Rev. B 89, 224109 (2014).

    ADS 

    Google Scholar 

  • 49.

    Zimmerman, G., Kershaw, D., Bailey, D. & Harte, J. LASNEX code for inertial confinement fusion. J. Opt. Soc. Am. 68, 549 (1978).

    ADS 

    Google Scholar 

  • 50.

    Boettger, J. C. SESAME Equation Of State For Epoxy. Report LA-12755-MS (Los Alamos National Laboratory, 1994).

  • 51.

    Wild, Ch., Herres, N. & Koidl, P. Texture formation in polycrystalline diamond films. J. Appl. Phys. 68, 973–978 (1990).

    ADS 
    CAS 

    Google Scholar 

  • 52.

    Vedam, K. & Schmidt, E. D. D. Variation of refractive index of MgO with pressure to 7 kbar. Phys. Rev. 146, 548–554 (1966).

    ADS 
    CAS 

    Google Scholar 

  • 53.

    Lazicki, A. et al. X-ray diffraction of solid tin to 1.2 TPa. Phys. Rev. Lett. 115, 075502 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *