Strange IndiaStrange India


  • 1.

    Clouaire, T., Marnef, A. & Legube, G. Taming tricky DSBs: ATM on duty. DNA Repair (Amst.) 56, 84–91 (2017).

    CAS 

    Google Scholar 

  • 2.

    McCord, R. P., Kaplan, N. & Giorgetti, L. Chromosome conformation capture and beyond: toward an integrative view of chromosome structure and function. Mol. Cell 77, 688–708 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Arnould, C. & Legube, G. The secret life of chromosome loops upon DNA double-strand break. J. Mol. Biol. 432, 724–736 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Clouaire, T. et al. Comprehensive mapping of histone modifications at DNA double-strand breaks deciphers repair pathway chromatin signatures. Mol. Cell 72, 250–262.e6 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Stewart, G. S., Wang, B., Bignell, C. R., Taylor, A. M. R. & Elledge, S. J. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421, 961–966 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Caron, P. et al. Cohesin protects genes against γH2AX Induced by DNA double-strand breaks. PLoS Genet. 8, e1002460 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Natale, F. et al. Identification of the elementary structural units of the DNA damage response. Nat. Commun. 8, 15760 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Ochs, F. et al. Stabilization of chromatin topology safeguards genome integrity. Nature 574, 571–574 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Iacovoni, J. S. et al. High-resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome. EMBO J. 29, 1446–1457 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Chang, L.-H., Ghosh, S. & Noordermeer, D. TADS and their borders: free movement or building a wall? J. Mol. Biol. 432, 643–652 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Caron, P. et al. Non-redundant functions of ATM and DNA-PKcs in response to DNA double-strand breaks. Cell Rep. 13, 1598–1609 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320.e24 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Gelot, C. et al. The cohesin complex prevents the end joining of distant DNA double-strand ends. Mol. Cell 61, 15–26 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Meisenberg, C. et al. Repression of transcription at DNA breaks requires cohesin throughout interphase and prevents genome instability. Mol. Cell 73, 212–223.e7 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Potts, P. R., Porteus, M. H. & Yu, H. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 25, 3377–3388 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Ström, L., Lindroos, H. B., Shirahige, K. & Sjögren, C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003–1015 (2004).

    PubMed 

    Google Scholar 

  • 19.

    Unal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16, 991–1002 (2004).

    PubMed 

    Google Scholar 

  • 20.

    Covo, S., Westmoreland, J. W., Gordenin, D. A. & Resnick, M. A. Cohesin is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes. PLoS Genet. 6, e1001006 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts DNA by loop extrusion. Science 366, 1345–1349 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178.e20 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042–2059 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Mirny, L. A., Imakaev, M. & Abdennur, N. Two major mechanisms of chromosome organization. Curr. Opin. Cell Biol. 58, 142–152 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Barrington, C. et al. Enhancer accessibility and CTCF occupancy underlie asymmetric TAD architecture and cell type specific genome topology. Nat. Commun. 10, 2908 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Aymard, F. et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 21, 366–374 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707.e14 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Dauban, L. et al. Regulation of cohesin-mediated chromosome folding by Eco1 and other partners. Mol. Cell 77, 1279–1293.e4 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Lee, C.-S., Lee, K., Legube, G. & Haber, J. E. Dynamics of yeast histone H2A and H2B phosphorylation in response to a double-strand break. Nat. Struct. Mol. Biol. 21, 103–109 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Sanders, J. T. et al. Radiation-induced DNA damage and repair effects on 3D genome organization. Nat. Commun. 11, 6178 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Kim, B.-J. et al. Genome-wide reinforcement of cohesin binding at pre-existing cohesin sites in response to ionizing radiation in human cells. J. Biol. Chem. 285, 22784–22792 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Kim, S.-T., Xu, B. & Kastan, M. B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev. 16, 560–570 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Collins, P. L. et al. DNA double-strand breaks induce H2Ax phosphorylation domains in a contact-dependent manner. Nat. Commun. 11, 3158 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Li, K., Bronk, G., Kondev, J. & Haber, J. E. Yeast ATM and ATR kinases use different mechanisms to spread histone H2A phosphorylation around a DNA double-strand break. Proc. Natl Acad. Sci. USA 117, 21354–21363 (2020).

    CAS 

    Google Scholar 

  • 38.

    Liu, Y. et al. Very fast CRISPR on demand. Science 368, 1265–1269 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Zhang, Y. et al. The fundamental role of chromatin loop extrusion in physiological V(D)J recombination. Nature 573, 600–604 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Zhang, X. et al. Fundamental roles of chromatin loop extrusion in antibody class switching. Nature 575, 385–389 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Gothe, H. J. et al. Spatial chromosome folding and active transcription drive DNA fragility and formation of oncogenic MLL translocations. Mol. Cell 75, 267–283.e12 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Canela, A. et al. Topoisomerase II-induced chromosome breakage and translocation is determined by chromosome architecture and transcriptional activity. Mol. Cell 75, 252–266.e8 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Mangeot, P. E. et al. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat. Commun. 10, 45 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Marnef, A. et al. A cohesin/HUSH- and LINC-dependent pathway controls ribosomal DNA double-strand break repair. Genes Dev. 33, 1175–1190 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Morawska, M. & Ulrich, H. D. An expanded tool kit for the auxin-inducible degron system in budding yeast. Yeast 30, 341–351 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Matelot, M. & Noordermeer, D. Determination of high-resolution 3D chromatin organization using circular chromosome conformation capture (4C-seq). Methods Mol. Biol. 1480, 223–241 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Klein, F. A. et al. FourCSeq: analysis of 4C sequencing data. Bioinformatics 31, 3085–3091 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    David, F. P. A. et al. HTSstation: a web application and open-access libraries for high-throughput sequencing data analysis. PLoS ONE 9, e85879 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Kojic, A. et al. Distinct roles of cohesin-SA1 and cohesin-SA2 in 3D chromosome organization. Nat. Struct. Mol. Biol. 25, 496–504 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *