Strange India All Strange Things About India and world


  • 1.

    Jonathan, S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article 

    Google Scholar 

  • 2.

    Lin, X., Liu, D. & Tománek, D. Shear instability in twisted bilayer graphene. Phys. Rev. B 98, 195432 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Jiang, L. et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls. Nat. Mater. 15, 840–844 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Cocemasov, A. I., Nika, D. L. & Balandin, A. A. Phonons in twisted bilayer graphene. Phys. Rev. B 88, 035428 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Lamparski, M., Van Troeye, B. & Meunier, V. Soliton signature in the phonon spectrum of twisted bilayer graphene. 2D Mater. 7, 025050 (2020).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Jorio, A. & Cançado, L. G. Raman spectroscopy of twisted bilayer graphene. Solid State Commun. 175–176, 3–12 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Eliel, G. S. N. et al. Intralayer and interlayer electron–phonon interactions in twisted graphene heterostructures. Nat. Commun. 9, 1221 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Shao, F. & Zenobi, R. Tip-enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials. Anal. Bioanal. Chem. 411, 37–61 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Angeli, M., Tosatti, E. & Fabrizio, M. Valley Jahn-Teller effect in twisted bilayer graphene. Phys. Rev. X 9, 041010 (2019).

    CAS 

    Google Scholar 

  • 12.

    Wu, F., MacDonald, A. H. & Martin, I. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Wu, F., Hwang, E. & Das Sarma, S. Phonon-induced giant linear-in-T resistivity in magic angle twisted bilayer graphene: ordinary strangeness and exotic superconductivity. Phys. Rev. B 99, 165112 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Lian, B., Wang, Z. & Bernevig, A. B. Twisted bilayer graphene: a phonon-driven superconductor. Phys. Rev. Lett. 122, 257002 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Uri, A. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 581, 47–52 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Mele, E. J. Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Yoshimori, A. & Kitano, Y. Theory of the lattice vibration of graphite. J. Phys. Soc. Jpn 11, 352–361 (1956).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Gargiulo, F. & Yazyev, O. V. Structural and electronic transformation in low-angle twisted bilayer graphene. 2D Mater. 5, 015019 (2017).

    Article 
    CAS 

    Google Scholar 

  • 19.

    Tuinstra, F. & Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G. & Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751–758 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Vasconcelos, T. L. et al. Plasmon-tunable tip pyramids: monopole nanoantennas for near-field scanning optical microscopy. Adv. Opt. Mater. 6, 1800528 (2018).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Liang, L., Puretzky, A. A., Sumpter, B. G. & Meunier, V. Interlayer bond polarizability model for stacking-dependent low-frequency Raman scattering in layered materials. Nanoscale 9, 15340–15355 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Thomsen, C. & Reich, S. Double resonant raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Lee, J. E., Ahn, G., Shim, J., Lee, Y. S. & Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Zabel, J. et al. Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons. Nano Lett. 12, 617–621 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Neumann, C. et al. Raman spectroscopy as probe of nanometre-scale strain variations in graphene. Nat. Commun. 6, 8429 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Lazzeri, M. & Mauri, F. Nonadiabatic Kohn anomaly in a doped graphene monolayer. Phys. Rev. Lett. 97, 266407 (2006).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    .Charlier, J.-C., Eklund, P. C., Zhu, J. & Ferrari, A. C. in Carbon Nanotubes (eds Jorio, A. et. al) 673–709 (Springer, 2008).

  • 34.

    Das, A. et al. Phonon renormalization in doped bilayer graphene. Phys. Rev. B 79, 155417 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Ribeiro, H. B. et al. Origin of van Hove singularities in twisted bilayer graphene. Carbon 90, 138–145 (2015).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A. C. & Robertson, J. Phonon linewidths and electron-phonon coupling in graphite and nanotubes. Phys. Rev. B 73, 155426 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Efthimiopoulos, I., Mayanna, S., Stavrou, E., Torode, A. & Wang, Y. Extracting the anharmonic properties of the G-band in graphene nanoplatelets. J. Phys. Chem. C 124, 4835–4842 (2020).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Serlin, M. et al. Intrinsic quantized anomalous hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Rabelo, C., Miranda, H., Vasconcelos, T. L., Cancado, L. G. & Jorio, A. Tip-enhanced Raman spectroscopy of graphene. In 4th Int. Symp. Instrumentation Systems, Circuits and Transducers (INSCIT) 1–6 (IEEE, 2019).

  • 42.

    Miranda, H. et al. Impact of substrate on tip-enhanced Raman spectroscopy: a comparison between field-distribution simulations and graphene measurements. Phys. Rev. Res. 2, 023408 (2020).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Miranda, H. et al. Optical properties of plasmon-tunable tip pyramids for tip-enhanced raman spectroscopy. Phys. Status Solidi 14, 2000212 (2020).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *