Strange IndiaStrange India


  • 1.

    Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Blahuta, S., Bessiere, A., Gourier, D., Ouspenski, V. & Viana, B. Effect of the X-ray dose on the luminescence properties of Ce:LYSO and co-doped Ca,Ce:LYSO single crystals for scintillation applications. Opt. Mater. 35, 1865–1868 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Yakunin, S. et al. Detection of X-ray photons by solution-processed organic–inorganic perovskites. Nat. Photon. 9, 444–449 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 11, 315–321 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 8.

    Büchele, P. et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat. Photon. 9, 843–848 (2015).

    ADS 
    Article 

    Google Scholar 

  • 9.

    le Masne de Chermont, Q. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl Acad. Sci. USA 104, 9266–9271 (2007).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418–426 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Matsuzawa, T., Aoki, Y., Takeuchi, N. & Murayama, Y. A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+. J. Electrochem. Soc. 143, 2670–2673 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Pan, Z. et al. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 11, 58–63 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Xue, Z. et al. X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging. ACS Appl. Mater. Interfaces 9, 22132–22142 (2017).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Song, L. et al. Low-dose X-ray activation of W(VI)-doped persistent luminescence nanoparticles for deep-tissue photodynamic therapy. Adv. Funct. Mater. 28, 1707496 (2018).

    Article 

    Google Scholar 

  • 15.

    Li, Y. et al. Long persistent phosphors-from fundamentals to applications. Chem. Soc. Rev. 45, 2090–2136 (2016).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Shyichuk, A. et al. Energy transfer upconversion dynamics in YVO4:Yb3+,Er3+. J. Lumin. 170, 560–570 (2016).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Capobianco, J. A., Vetrone, F., Boyer, J. C., Speghini, A. & Bettinelli, M. Enhancement of red emission (4F9/24I15/2) via upconversion in bulk and nanocrystalline cubic Y2O3:Er3+. J. Phys. Chem. B 106, 1181–1187 (2002).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Van der Heggen, D. et al. Optically stimulated nanodosimeters with high storage capacity. Nanomaterials 9, 1127 (2019).

    Article 

    Google Scholar 

  • 19.

    Hsu, C.-C., Lin, S.-L. & Chang, C. A. Lanthanide-doped core–shell–shell nanocomposite for dual photodynamic therapy and luminescence imaging by a single X-ray excitation source. ACS Appl. Mater. Interfaces 10, 7859–7870 (2018).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Nikl, M. & Yoshikawa, A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Opt. Mater. 3, 463–481 (2015).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Prigozhin, M. B. et al. Bright sub-20-nm cathodoluminescent nanoprobes for electron microscopy. Nat. Nanotechnol. 14, 420–425 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 23.

    Bünzli, J.-C. G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 110, 2729–2755 (2010).

    Article 

    Google Scholar 

  • 24.

    Fernandez-Bravo, A. et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol. 13, 572–577 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Lushchik, C. B. Creation of Frenkel defect pairs by excitons in alkali halides. Mod. Probl. Condens. Matter Sci. 13, 473–525 (1986).

    Article 

    Google Scholar 

  • 26.

    Berger, M. J. et al. XCOM: Photon Cross Sections Database (NIST, 2013); https://www.nist.gov/pml/xcom-photon-cross-sections-database

  • 27.

    Cooper, D. R., Capobianco, J. A. & Seuntjens, J. Radioluminescence studies of colloidal oleate-capped beta-Na(Gd, Lu)F4:Ln3+ nanoparticles (Ln = Ce, Eu, Tb). Nanoscale 10, 7821–7832 (2018).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Kang, M. et al. Resolving the nature of electronic excitations in resonant inelastic X-ray scattering. Phys. Rev. B 99, 045105 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 29.

    Lu, K. et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Yang, Y. et al. X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions. Light Sci. Appl. 7, 88 (2018).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    All, A. H. et al. Expanding the toolbox of upconversion nanoparticles for in vivo optogenetics and neuromodulation. Adv. Mater. 31, 1803474 (2019).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Holler, M. et al. High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature 543, 402–406 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Van den Eeckhout, K., Bos, A. J. J., Poelman, D. & Smet, P. F. Revealing trap depth distributions in persistent phosphors. Phys. Rev. B 87, 045126 (2013).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Huang, B. Doping of RE ions in the 2D ZnO layered system to achieve low-dimensional upconverted persistent luminescence based on asymmetric doping in ZnO systems. Phys. Chem. Chem. Phys. 19, 12683–12711 (2017).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Rappe, A. M., Rabe, K. M., Kaxiras, E. & Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 41, 1227–1230 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 38.

    Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *