Strange India All Strange Things About India and world


  • 1.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Houghton, R. A. Land‐use change and the carbon cycle. Glob. Change Biol. 1, 275–287 (1995).

    ADS 

    Google Scholar 

  • 6.

    Gruber, N. & Galloway, J. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 8.

    Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 7, 63–68 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 9.

    Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, L04705 (2008).

    ADS 

    Google Scholar 

  • 10.

    Smith, S. M. et al. Equivalence of greenhouse-gas emissions for peak temperature limits. Nat. Clim. Chang. 2, 535–538 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    Rogelj, J., Meinshausen, M., Schaeffer, M., Knutti, R. & Riahi, K. Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming. Environ. Res. Lett. 10, 075001 (2015).

    ADS 

    Google Scholar 

  • 12.

    Collins, W. J. et al. Increased importance of methane reduction for a 1.5 degree target. Environ. Res. Lett. 13, 054003 (2018).

    ADS 

    Google Scholar 

  • 13.

    Peters, G. P. et al. Key indicators to track current progress and future ambition of the Paris Agreement. Nat. Clim. Chang. 7, 118–122 (2017).

    ADS 

    Google Scholar 

  • 14.

    Le Quéré, C. et al. Drivers of declining CO2 emissions in 18 developed economies. Nat. Clim. Chang. 9, 213–217 (2019).

    ADS 

    Google Scholar 

  • 15.

    FAO. FAOSTAT http://faostat.fao.org/ (Food and Agriculture Organization of the United Nations, 2019).

  • 16.

    Houghton, R. A. The annual net flux of carbon to the atmosphere from changes in land use, 1850–1990. Tellus B 51, 298–313 (1999).

    ADS 

    Google Scholar 

  • 17.

    Carlson, K. M. et al. Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nat. Clim. Chang. 3, 283–287 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 18.

    Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl Acad. Sci. USA 103, 14637–14641 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 5, 024002 (2010).

    ADS 

    Google Scholar 

  • 20.

    Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles 23, GB2002 (2009).

    ADS 

    Google Scholar 

  • 21.

    Huber, V., Neher, I., Bodirsky, B. L., Hofner, K. & Schellnhuber, H. J. Will the world run out of land? A Kaya-type decomposition to study past trends of cropland expansion. Environ. Res. Lett. 9, 024011 (2014).

    ADS 

    Google Scholar 

  • 22.

    Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009 (2012).

    ADS 

    Google Scholar 

  • 23.

    IPCC. Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019); https://www.ipcc.ch/srccl/

  • 24.

    Hansis, E., Davis, S. J. & Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. Glob. Biogeochem. Cycles 29, 1230–1246 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 25.

    Davis, S. J., Burney, J. A., Pongratz, J. & Caldeira, K. Methods for attributing land-use emissions to products. Carbon Manag. 5, 233–245 (2014).

    CAS 

    Google Scholar 

  • 26.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    US EPA. Global Anthropogenic Non‐CO2Greenhouse Gas Emissions: 1990–2030. Report No. 430-R-12-006 (US Environmental Protection Agency, 2012); www.epa.gov/sites/production/files/2016-08/documents/epa_global_nonco2_projections_dec2012.pdf

  • 28.

    Janssens-Maenhout, G. et al. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data 11, 959–1002 (2019).

    ADS 

    Google Scholar 

  • 29.

    Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 30.

    Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    ADS 

    Google Scholar 

  • 31.

    Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Sánchez, P. A. Tripling crop yields in tropical Africa. Nat. Geosci. 3, 299–300 (2010).

    ADS 

    Google Scholar 

  • 33.

    Felix, M. & Gheewala, S. H. A review of biomass energy dependency in Tanzania. Enrgy. Proced. 9, 338–343 (2011).

    Google Scholar 

  • 34.

    Sola, P., Ochieng, C., Yila, J. & Iiyama, M. Links between energy access and food security in sub Saharan Africa: an exploratory review. Food Secur. 8, 635–642 (2016).

    Google Scholar 

  • 35.

    Gustavsson, J., Cederberg, C. & Sonesson, U. Global Food Losses and Food Waste: Extent, Causes and Prevention (Food and Agriculture Organization of the United Nations, 2011); http://www.fao.org/3/a-i2697e.pdf

  • 36.

    D’Odorico, P., Carr, J. A., Laio, F., Ridolfi, L. & Vandoni, S. Feeding humanity through global food trade. Earths Futur. 2, 458–469 (2014).

    ADS 

    Google Scholar 

  • 37.

    Lamb, A. et al. The potential for land sparing to offset greenhouse gas emissions from agriculture. Nat. Clim. Chang. 6, 488–492 (2016).

    ADS 

    Google Scholar 

  • 38.

    Clark, M. & Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 12, 064016 (2017).

    ADS 

    Google Scholar 

  • 39.

    Kanter, D. R. & Searchinger, T. D. A technology-forcing approach to reduce nitrogen pollution. Nat. Sustain. 1, 544–552 (2018); author correction 1, 719 (2018).

    Google Scholar 

  • 40.

    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 6, 452–461 (2016).

    ADS 

    Google Scholar 

  • 42.

    Ritchie, H., Reay, D. S. & Higgins, P. Beyond calories: a holistic assessment of the global food system. Front. Sustain. Food Syst. 2, 57 (2018).

    Google Scholar 

  • 43.

    Bajželj, B. et al. Importance of food-demand management for climate mitigation. Nat. Clim. Chang. 4, 924–929 (2014).

    ADS 

    Google Scholar 

  • 44.

    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018); erratum 363, eaaw9908 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Stehfest, E. Food choices for health and planet. Nature 515, 501–502 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Jiang, Y. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crops Res. 234, 47–54 (2019).

    Google Scholar 

  • 47.

    Jiang, Y. et al. Higher yields and lower methane emissions with new rice cultivars. Glob. Change Biol. 23, 4728–4738 (2017).

    ADS 

    Google Scholar 

  • 48.

    Roque, B. M. et al. Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Animal Microbiome 1, 3 (2019); correction 1, 4 (2019).

    Google Scholar 

  • 49.

    Lamb, W. F. & Minx, J. C. The political economy of national climate policy: architectures of constraint and a typology of countries. Energy Res. Soc. Sci. 64, 101429 (2020).

    Google Scholar 

  • 50.

    Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5° and 2° C climate change targets. Science 370, 705–708 (2020).

  • 51.

    Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    ADS 

    Google Scholar 

  • 52.

    Pongratz, J., Reick, C., Raddatz, T. & Claussen, M. A reconstruction of global agricultural areas and land cover for the last millennium. Glob. Biogeochem. Cycles 22, GB3018 (2008).

    ADS 

    Google Scholar 

  • 53.

    Houghton, R. A. et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol. Monogr. 53, 235–262 (1983).

    CAS 

    Google Scholar 

  • 54.

    Heinimann, A. et al. A global view of shifting cultivation: recent, current, and future extent. PLoS One 12, e0184479 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Leifeld, J., Wust-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Chang. 9, 945–947 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 56.

    Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7, 1505–1514 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 57.

    van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    ADS 

    Google Scholar 

  • 58.

    Tubiello, F. N. et al. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 8, 015009 (2013).

    ADS 

    Google Scholar 

  • 59.

    Conant, R. T., Berdanier, A. B. & Grace, P. R. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Glob. Biogeochem. Cycles 27, 558–566 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 60.

    IPCC. Guidelines for National Greenhouse Gas Inventories Vol. 4 (IPCC, 2006).

  • 61.

    FAO. Global Agro-Ecological Zones (GAEZ v3.0) http://www.fao.org/nr/gaez/en/ (Food and Agriculture Organization of the United Nations, 2012).

  • 62.

    Davis, S. J., Peters, G. P. & Caldeira, K. The supply chain of CO2 emissions. Proc. Natl Acad. Sci. USA 108, 18554–18559 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Davis, S. J. & Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl Acad. Sci. USA 107, 5687–5692 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Peters, G. P. & Hertwich, E. G. CO2 embodied in international trade with implications for global climate policy. Environ. Sci. Technol. 42, 1401–1407 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    UN. World Population Prospects 2019: Highlights. Report No. ST/ESA/SER.A/423 (United Nations, 2019); https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf

  • 66.

    FAO. Food Balance Sheets: A Handbook (Food and Agriculture Organization of the United Nations, 2001); http://www.fao.org/docrep/pdf/011/x9892e/x9892e00.pdf

  • 67.

    Robinson, T. P., Franceschini, G. & Wint, W. The Food and Agriculture Organization’s gridded livestock of the world. Vet. Ital. 43, 745–751 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS One 9, e96084 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    IPCC. Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  • 71.

    IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • 72.

    Allen, M. R. et al. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. npj Clim. Atmos. Sci 1, 16 (2018).

    Google Scholar 

  • 73.

    Cain, M. et al. Improved calculation of warming-equivalent emissions for short-lived climate pollutants. npj Clim. Atmos. Sci. 2, 29 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    ADS 

    Google Scholar 

  • 75.

    Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

    ADS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *