Strange India All Strange Things About India and world


  • 1.

    Mercer, J. H. A former ice sheet in the Arctic Ocean? Palaeogeogr. Palaeoclimatol. Palaeoecol. 8, 19–27 (1970).

    Google Scholar 

  • 2.

    Hughes, T., Denton, G. & Grosswald, M. Was there a late-Würm Arctic ice sheet? Nature 266, 596–602 (1977).

    ADS 

    Google Scholar 

  • 3.

    Broecker, W. S. Floating glacial ice caps in the Arctic Ocean. Science 188, 1116–1118 (1975).

    Google Scholar 

  • 4.

    Jakobsson, M. et al. Pleistocene stratigraphy and paleoenvironmental variation from Lomonosov Ridge sediments, central Arctic Ocean. Global Planet. Change 31, 1–22 (2001).

    ADS 

    Google Scholar 

  • 5.

    Jakobsson, M. et al. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. Nat. Commun. 7, 10365 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Polyak, L., Edwards, M. H., Coakley, B. J. & Jakobsson, M. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature 410, 453–457 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Gasson, E. G. W., DeConto, R. M., Pollard, D. & Clark, C. D. Numerical simulations of a kilometre-thick Arctic ice shelf consistent with ice grounding observations. Nat. Commun. 9, 1510 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Nilsson, J. et al. Ice-shelf damming in the glacial Arctic Ocean: dynamical regimes of a basin-covering kilometre-thick ice shelf. Cryosphere 11, 1745–1765 (2017).

    ADS 

    Google Scholar 

  • 9.

    Ku, T.-L. & Broecker, W. S. Rates of sedimentation in the Arctic Ocean. Prog. Oceanogr. 4, 95–104 (1965).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    Huh, C.-A., Pisias, N. G., Kelley, J. M., Maiti, T. C. & Grantz, A. Natural radionuclides and plutonium in sediments from the western Arctic Ocean: sedimentation rates and pathways of radionuclides. Deep Sea Res. Part II 44, 1725–1743 (1997).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    Hoffmann, S. & McManus, J. Is there a 230Th deficit in Arctic sediments? Earth Planet. Sci. Lett. 258, 516–527 (2007).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Henderson, G. M. Seawater (234U/238U) during the last 800 thousand years. Earth Planet. Sci. Lett. 199, 97–110 (2002).

    ADS 
    CAS 

    Google Scholar 

  • 13.

    Francois, R., Frank, M., van der Loeff, M. M. R. & Bacon, M. P. Th-230 normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 19, PA1018 (2004).

  • 14.

    Costa, K. M. et al. 230Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and Quaternary ocean. Paleoceanogr. Paleoclim. 35, e2019PA003820 (2020).

    Google Scholar 

  • 15.

    Anderson, R. F., Bacon, M. P. & Brewer, P. G. Removal of 230Th and 231Pa from the open ocean. Earth Planet. Sci. Lett. 62, 7–23 (1983).

    ADS 
    CAS 

    Google Scholar 

  • 16.

    Yang, H. S., Nozaki, Y., Sakai, H. & Masuda, A. The distribution of 230Th and 231Pa in the deep-sea surface sediments of the Pacific Ocean. Geochim. Cosmochim. Acta 50, 81–89 (1986).

    ADS 
    CAS 

    Google Scholar 

  • 17.

    Jakobsson, M. et al. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology 28, 23–26 (2000).

    ADS 
    CAS 

    Google Scholar 

  • 18.

    Backman, J., Jakobsson, M., Løvlie, R., Polyak, L. & Febo, L. A. Is the central Arctic Ocean a sediment-starved basin? Quat. Sci. Rev. 23, 1435–1454 (2004).

    ADS 

    Google Scholar 

  • 19.

    Jang, K. et al. Glacial freshwater discharge events recorded by authigenic neodymium isotopes in sediments from the Mendeleev Ridge, western Arctic Ocean. Earth Planet. Sci. Lett. 369–370, 148–157 (2013).

    ADS 

    Google Scholar 

  • 20.

    Not, C. & Hillaire-Marcel, C. Time constraints from 230Th and 231Pa data in late Quaternary, low sedimentation rate sequences from the Arctic Ocean: an example from the northern Mendeleev Ridge. Quat. Sci. Rev. 29, 3665–3675 (2010).

    ADS 

    Google Scholar 

  • 21.

    Hillaire-Marcel, C. et al. A new chronology of late Quaternary sequences from the central Arctic Ocean based on “extinction ages” of their excesses in 231Pa and 230Th. Geochem. Geophys. Geosyst. 18, 4573–4585 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 22.

    Spielhagen, R. F. et al. Arctic Ocean deep-sea record of northern Eurasian ice-sheet history. Quat. Sci. Rev. 23, 1455–1483 (2004).

    ADS 

    Google Scholar 

  • 23.

    O’Regan, M., Backman, J., Fornaciari, E., Jakobsson, M. & West, G. Calcareous nannofossils anchor chronologies for Arctic Ocean sediments back to 500 ka. Geology 48, 1115–1119 (2020).

  • 24.

    Eisenhauer, A. et al. in Geological History of the Polar Oceans: Arctic versus Antarctic (eds Bleil, U. & Thiede, J.) 475–487 (Kluwer Academic, 1990).

  • 25.

    Paetsch, H. Sedimentation im Europäischen Nordmeer: Radioisotopische, Geochemische und Tonmineralogische Untersuchungen Spätquartärer Ablagerungen. Report No. 29 (Christian-Albrechts-Universität, 1991).

  • 26.

    Scholten, J. C. et al. High resolution 230Thex stratigraphy of sediments from high-latitude areas (Norwegian Sea, Fram Strait). Earth Planet. Sci. Lett. 101, 54–62 (1990).

    ADS 
    CAS 

    Google Scholar 

  • 27.

    Scholten, J., Botz, R., Paetsch, H., Stoffers, P. & Weinelt, M. High-resolution uranium-series dating of Norwegian–Greenland Sea sediments: 230Th vs. δ18O stratigraphy. Mar. Geol. 121, 77–85 (1994).

    ADS 
    CAS 

    Google Scholar 

  • 28.

    Henderson, G. M., Heinze, C., Anderson, R. F. & Winguth, A. M. Global distribution of the 230Th flux to ocean sediments constrained by GCM modelling. Deep Sea Res. Part I 46, 1861–1893 (1999).

    CAS 

    Google Scholar 

  • 29.

    Valk, O. et al. Importance of hydrothermal vents in scavenging removal of 230Th in the Nansen Basin. Geophys. Res. Lett. 45, 10539–10548 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 30.

    Chauhan, T., Noormets, R. & Rasmussen, T. L. Glaciomarine sedimentation and bottom current activity on the north-western and northern continental margins of Svalbard during the late Quaternary. Geo-Mar. Lett. 36, 81–99 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Brendryen, J., Haflidason, H., Yokoyama, Y., Haaga, K. A. & Hannisdal, B. Eurasian Ice Sheet collapse was a major source of Meltwater Pulse 1A 14,600 years ago. Nat. Geosci. 13, 363–368 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 32.

    Strobl, C. Datierung von Sedimentkernen und Rekonstruktion der Transportwege der Radionuklide 10Be, 230Th und 231Pa in Hohen Nördlichen Breiten. PhD thesis, Ruprecht-Karls-Universität (1998).

  • 33.

    Spielhagen, R. F. et al. Arctic Ocean evidence for late Quaternary initiation of northern Eurasian ice sheets. Geology 25, 783–786 (1997).

    ADS 

    Google Scholar 

  • 34.

    Jakobsson, M. et al. Arctic Ocean glacial history. Quat. Sci. Rev. 92, 40–67 (2014).

    Google Scholar 

  • 35.

    Unterman, M. B., Crowley, T. J., Hodges, K. I., Kim, S.-J. & Erickson, D. J. Paleometeorology: high-resolution Northern Hemisphere wintertime mid-latitude dynamics during the last glacial maximum. Geophys. Res. Lett. 38, (2011).

  • 36.

    Sidorchuk, A. Y., Panin, A., Borisova, O., Elias, S. & Syvistki, J. Channel morphology and river flow in the northern Russian Plain in the Late Glacial and Holocene. Int. J. Earth Sci. 89, 541–549 (2000).

    Google Scholar 

  • 37.

    Jakobsson, M. Hypsometry and volume of the Arctic Ocean and its constituent seas. Geochem. Geophys. Geosyst. 3, 1–18 (2002).

    Google Scholar 

  • 38.

    Brinkhuis, H. et al. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 441, 606–609 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Stärz, M., Jokat, W., Knorr, G. & Lohmann, G. Threshold in North Atlantic–Arctic Ocean circulation controlled by the subsidence of the Greenland–Scotland Ridge. Nat. Commun. 8, 15681 (2017).

  • 40.

    Kuijpers, A. & Werner, F. Extremely deep-draft iceberg scouring in the glacial North Atlantic Ocean. Geo-Mar. Lett. 27, 383–389 (2007).

    ADS 

    Google Scholar 

  • 41.

    Schmidt, M. W., Spero, H. J. & Lea, D. W. Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation. Nature 428, 160–163 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 42.

    Tarasov, L. & Peltier, W. R. Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435, 662–665 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Williams, D. F., Moore, W. S. & Fillon, R. H. Role of glacial Arctic Ocean ice sheets in Pleistocene oxygen isotope and sea level records. Earth Planet. Sci. Lett. 56, 157–166 (1981).

    ADS 
    CAS 

    Google Scholar 

  • 44.

    Hibbert, F. D. et al. Coral indicators of past sea-level change: a global repository of U-series dated benchmarks. Quat. Sci. Rev. 145, 1–56 (2016).

    ADS 

    Google Scholar 

  • 45.

    Rohling, E. J. et al. Differences between the last two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions. Quat. Sci. Rev. 176, 1–28 (2017).

    ADS 

    Google Scholar 

  • 46.

    Hoffmann, S. S., McManus, J. F., Curry, W. B. & Brown-Leger, L. S. Persistent export of 231Pa from the deep central Arctic Ocean over the past 35,000 years. Nature 497, 603–606 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Frank, M. & Eisenhauer, A. Radionuclides analysed on sediment core PS1533-3 from the Arctic Ocean. PANGAEA https://doi.org/10.1594/PANGAEA.50830 (1996).

  • 48.

    Eisenhauer, A. et al. 10Be records of sediment cores from high northern latitudes: implications for environmental and climatic changes. Earth Planet. Sci. Lett. 124, 171–184 (1994).

    ADS 
    CAS 

    Google Scholar 

  • 49.

    Geibert, W., Stimac, I., Rutgers van der Loeff, M. M. & Kuhn, G. Dating deep-sea sediments with 230Th excess using a constant rate of supply model. Paleoceanogr. Paleoclimatol. 34, 1895–1912 (2019).

    ADS 

    Google Scholar 

  • 50.

    Matthiessen, J. Linescanner images of sediment core PS72/396-5. PANGAEA https://doi.org/10.1594/PANGAEA.817507 (2013).

  • 51.

    Matthiessen, J. Linescanner images of sediment core PS72/396-3. PANGAEA https://doi.org/10.1594/PANGAEA.817506 (2013).

  • 52.

    Missiaen, L. et al. Downcore variations of sedimentary detrital (238U/232Th) ratio: implications on the use of 230Thxs and 231Paxs to reconstruct sediment flux and ocean circulation. Geochem. Geophys. Geosyst. 19, 2560–2573 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 53.

    Ku, T. L. An evaluation of the U234/U238 method as a tool for dating pelagic sediments. J. Geophys. Res. 70, 3457–3474 (1965).

    ADS 
    CAS 

    Google Scholar 

  • 54.

    Nowaczyk, N. R., Frederichs, T. W., Eisenhauer, A. & Gard, G. Magnetostratigraphic data from late Quaternary sediments from the Yermak Plateau, Arctic Ocean: evidence for four geomagnetic polarity events within the last 170 Ka of the Brunhes Chron. Geophys. J. Int. 117, 453–471 (1994).

    ADS 

    Google Scholar 

  • 55.

    Wiers, S., Snowball, I., O’Regan, M. & Almqvist, B. Late Pleistocene chronology of sediments from the Yermak Plateau and uncertainty in dating based on geomagnetic excursions. Geochem. Geophys. Geosyst. 20, 3289–3310 (2019).

    ADS 

    Google Scholar 

  • 56.

    Kremer, A. et al. Changes in sea ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka – reconstructions from biomarker records. Quat. Sci. Rev. 182, 93–108 (2018).

    ADS 

    Google Scholar 

  • 57.

    Sanchez Goñi, M. F. & Harrison, S. P. Millennial-scale climate variability and vegetation changes during the Last Glacial: concepts and terminology. Quat. Sci. Rev. 29, 2823–2827 (2010).

    ADS 

    Google Scholar 

  • 58.

    Nørgaard‐Pedersen, N., Spielhagen, R. F., Thiede, J. & Kassens, H. Central Arctic surface ocean environment during the past 80,000 years. Paleoceanography 13, 193–204 (1998).

    ADS 

    Google Scholar 

  • 59.

    Adler, R. E. et al. Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge. Global Planet. Change 68, 18–29 (2009).

    ADS 

    Google Scholar 

  • 60.

    Stein, R. et al. Towards a better (litho-)stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung 79, 97–121 (2010).

    Google Scholar 

  • 61.

    Stein, R., Matthiessen, J. & Niessen, F. Re-coring at Ice Island T3 site of key core FL-224 (Nautilus Basin, Amerasian Arctic): sediment characteristics and stratigraphic framework. Polarforschung 79, 81–96 (2010).

    Google Scholar 

  • 62.

    Poore, R., Osterman, L., Curry, W. & Phillips, R. Late Pleistocene and Holocene meltwater events in the western Arctic Ocean. Geology 27, 759–762 (1999).

    ADS 
    CAS 

    Google Scholar 

  • 63.

    Polyak, L. et al. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. Global Planet. Change 68, 5–17 (2009).

    ADS 

    Google Scholar 

  • 64.

    Raffi, I. et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev. 25, 3113–3137 (2006).

    ADS 

    Google Scholar 

  • 65.

    Jakobsson, M., Backman, J., Murray, A. & Løvlie, R. Optically stimulated luminescence dating supports central Arctic Ocean cm-scale sedimentation rates. Geochem. Geophys. Geosyst. 4, (2003).

  • 66.

    Backman, J., Fornaciari, E. & Rio, D. Biochronology and paleoceanography of late Pleistocene and Holocene calcareous nannofossil abundances across the Arctic Basin. Mar. Micropaleontol. 72, 86–98 (2009).

    ADS 

    Google Scholar 

  • 67.

    Gard, G. & Backman, J. in Geological History of the Polar Oceans: Arctic versus Antarctic (eds Bleil, U. & Thiede, J.) 417–436 (Springer, 1990).

  • 68.

    Fütterer, D. K. (ed.) ARCTIC ’91: the expedition ARK-Vllll3 of RV “Polarstern” in 1991. Berichte Polarforsch. 107, 1–267 (1992); https://doi.org/10.2312/BzP_0107_1992

  • 69.

    Jokat, W. (ed.) ARCTIC ’98: the expedition ARKTIS-XVl2 of “Polarstern” in 1999. Berichte Polarforsch. 308,1–159 (1999); https://doi.org/10.2312/BzP_0308_1999

  • 70.

    Jokat, W. (ed.) The expedition of the research vessel “Polarstern” to the Arctic in 2008 (ARK-XXIII/3). Berichte Polar- Meeresforsch. 597, 1–266 (2009); https://doi.org/10.2312/BzPM_0597_2009

  • 71.

    Stein, R. The expedition PS87 of the research vessel POLARSTERN to the Arctic Ocean in 2014. Berichte Polar- Meeresforsch. 688, 1–273 (2015); https://doi.org/10.2312/BzPM_0688_2015

  • 72.

    Polyak, L., Curry, W. B., Darby, D. A., Bischof, J. & Cronin, T. M. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 73–93 (2004).

    Google Scholar 

  • 73.

    März, C. et al. Manganese-rich brown layers in Arctic Ocean sediments: composition, formation mechanisms, and diagenetic overprint. Geochim. Cosmochim. Acta 75, 7668–7687 (2011).

    ADS 

    Google Scholar 

  • 74.

    Feyling-Hanssen, R. W. Foraminiferal Stratigraphy in the Plio–Pleistocene Kap København Formation, North Greenland Vo. 24 (Museum Tusculanum Press, 1990).

  • 75.

    McNeil, D. et al. Sequence stratigraphy, biotic change, 87Sr/86Sr record, paleoclimatic history, and sedimentation rate change across a regional late Cenozoic unconformity in Arctic Canada. Can. J. Earth Sci. 38, 309–331 (2001).

    ADS 

    Google Scholar 

  • 76.

    Nürnberg, D. et al. Sediments in Arctic sea ice: implications for entrainment, transport and release. Mar. Geol. 119, 185–214 (1994).

    ADS 

    Google Scholar 

  • 77.

    Wollenburg, I. Sedimenttransport durch das arktische Meereis: die rezente lithogene und biogene Materialfracht. Sediment transport by Arctic Sea ice: the recent load of lithogenic and biogenic material. Berichte Polarforsch. 127, 1–159 (1993); https://doi.org/10.2312/BzP_0127_1993

  • 78.

    Green, K. E. Ecology of some Arctic foraminifera. Micropaleontology 6, 57–78 (1960).

    Google Scholar 

  • 79.

    Wollenburg, J. Benthische Foraminiferenfaunen als Wassermassen-, Produktions- und Eisdriftanzeiger im Arktischen Ozean (benthic foraminiferal assemblages in the Arctic Ocean: indicators for water mass distribution, productivity, and sea ice drift). Berichte Polarforsch. 179, 1–227 (1995); https://doi.org/10.2312/BzP_0179_1995

  • 80.

    Wollenburg, J. E., Mackensen, A. & Kuhnt, W. Benthic foraminiferal biodiversity response to a changing Arctic palaeoclimate in the last 24,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 255, 195–222 (2007).

    Google Scholar 

  • 81.

    Darby, D. A., Myers, W. B., Jakobsson, M. & Rigor, I. Modern dirty sea ice characteristics and sources: the role of anchor ice. J. Geophys. Res. Oceans 116, C09008 (2011).

  • 82.

    Evans, J. R. & Kaminski, M. A. Pliocene and Pleistocene chronostratigraphy and paleoenvironment of the central Arctic Ocean, using deep water agglutinated foraminifera. Micropaleontology 44, 109–130 (1998).

    Google Scholar 

  • 83.

    Wollenburg, J. E., Kuhnt, W. & Mackensen, A. Changes in Arctic Ocean paleoproductivity and hydrography during the last 145 kyr: the benthic foraminiferal record. Paleoceanography 16, 65–77 (2001).

    ADS 

    Google Scholar 

  • 84.

    Pham, M. et al. A new Certified Reference Material for radionuclides in Irish sea sediment (IAEA-385). Appl. Radiat. Isot. 66, 1711–1717 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Nowaczyk, N. R. & Baumann, M. Combined high-resolution magnetostratigraphy and nannofossil biostratigraphy for late Quaternary Arctic Ocean sediments. Deep Sea Res. Part A 39, S567–S601 (1992).

    ADS 

    Google Scholar 

  • 86.

    Pagels, U. Sedimentologische Untersuchungen und Bestimmung der Karbonatlösung in spätquartären Sedimenten des östlichen arktischen Ozeans. GEOMAR Report No. 10 (GEOMAR Forschungszentrum für marine Geowissenschaften, 1991).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *