Mercer, J. H. A former ice sheet in the Arctic Ocean? Palaeogeogr. Palaeoclimatol. Palaeoecol. 8, 19–27 (1970).
Hughes, T., Denton, G. & Grosswald, M. Was there a late-Würm Arctic ice sheet? Nature 266, 596–602 (1977).
Google Scholar
Broecker, W. S. Floating glacial ice caps in the Arctic Ocean. Science 188, 1116–1118 (1975).
Jakobsson, M. et al. Pleistocene stratigraphy and paleoenvironmental variation from Lomonosov Ridge sediments, central Arctic Ocean. Global Planet. Change 31, 1–22 (2001).
Google Scholar
Jakobsson, M. et al. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. Nat. Commun. 7, 10365 (2016).
Google Scholar
Polyak, L., Edwards, M. H., Coakley, B. J. & Jakobsson, M. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature 410, 453–457 (2001).
Google Scholar
Gasson, E. G. W., DeConto, R. M., Pollard, D. & Clark, C. D. Numerical simulations of a kilometre-thick Arctic ice shelf consistent with ice grounding observations. Nat. Commun. 9, 1510 (2018).
Google Scholar
Nilsson, J. et al. Ice-shelf damming in the glacial Arctic Ocean: dynamical regimes of a basin-covering kilometre-thick ice shelf. Cryosphere 11, 1745–1765 (2017).
Google Scholar
Ku, T.-L. & Broecker, W. S. Rates of sedimentation in the Arctic Ocean. Prog. Oceanogr. 4, 95–104 (1965).
Google Scholar
Huh, C.-A., Pisias, N. G., Kelley, J. M., Maiti, T. C. & Grantz, A. Natural radionuclides and plutonium in sediments from the western Arctic Ocean: sedimentation rates and pathways of radionuclides. Deep Sea Res. Part II 44, 1725–1743 (1997).
Google Scholar
Hoffmann, S. & McManus, J. Is there a 230Th deficit in Arctic sediments? Earth Planet. Sci. Lett. 258, 516–527 (2007).
Google Scholar
Henderson, G. M. Seawater (234U/238U) during the last 800 thousand years. Earth Planet. Sci. Lett. 199, 97–110 (2002).
Google Scholar
Francois, R., Frank, M., van der Loeff, M. M. R. & Bacon, M. P. Th-230 normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 19, PA1018 (2004).
Costa, K. M. et al. 230Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and Quaternary ocean. Paleoceanogr. Paleoclim. 35, e2019PA003820 (2020).
Anderson, R. F., Bacon, M. P. & Brewer, P. G. Removal of 230Th and 231Pa from the open ocean. Earth Planet. Sci. Lett. 62, 7–23 (1983).
Google Scholar
Yang, H. S., Nozaki, Y., Sakai, H. & Masuda, A. The distribution of 230Th and 231Pa in the deep-sea surface sediments of the Pacific Ocean. Geochim. Cosmochim. Acta 50, 81–89 (1986).
Google Scholar
Jakobsson, M. et al. Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology 28, 23–26 (2000).
Google Scholar
Backman, J., Jakobsson, M., Løvlie, R., Polyak, L. & Febo, L. A. Is the central Arctic Ocean a sediment-starved basin? Quat. Sci. Rev. 23, 1435–1454 (2004).
Google Scholar
Jang, K. et al. Glacial freshwater discharge events recorded by authigenic neodymium isotopes in sediments from the Mendeleev Ridge, western Arctic Ocean. Earth Planet. Sci. Lett. 369–370, 148–157 (2013).
Google Scholar
Not, C. & Hillaire-Marcel, C. Time constraints from 230Th and 231Pa data in late Quaternary, low sedimentation rate sequences from the Arctic Ocean: an example from the northern Mendeleev Ridge. Quat. Sci. Rev. 29, 3665–3675 (2010).
Google Scholar
Hillaire-Marcel, C. et al. A new chronology of late Quaternary sequences from the central Arctic Ocean based on “extinction ages” of their excesses in 231Pa and 230Th. Geochem. Geophys. Geosyst. 18, 4573–4585 (2017).
Google Scholar
Spielhagen, R. F. et al. Arctic Ocean deep-sea record of northern Eurasian ice-sheet history. Quat. Sci. Rev. 23, 1455–1483 (2004).
Google Scholar
O’Regan, M., Backman, J., Fornaciari, E., Jakobsson, M. & West, G. Calcareous nannofossils anchor chronologies for Arctic Ocean sediments back to 500 ka. Geology 48, 1115–1119 (2020).
Eisenhauer, A. et al. in Geological History of the Polar Oceans: Arctic versus Antarctic (eds Bleil, U. & Thiede, J.) 475–487 (Kluwer Academic, 1990).
Paetsch, H. Sedimentation im Europäischen Nordmeer: Radioisotopische, Geochemische und Tonmineralogische Untersuchungen Spätquartärer Ablagerungen. Report No. 29 (Christian-Albrechts-Universität, 1991).
Scholten, J. C. et al. High resolution 230Thex stratigraphy of sediments from high-latitude areas (Norwegian Sea, Fram Strait). Earth Planet. Sci. Lett. 101, 54–62 (1990).
Google Scholar
Scholten, J., Botz, R., Paetsch, H., Stoffers, P. & Weinelt, M. High-resolution uranium-series dating of Norwegian–Greenland Sea sediments: 230Th vs. δ18O stratigraphy. Mar. Geol. 121, 77–85 (1994).
Google Scholar
Henderson, G. M., Heinze, C., Anderson, R. F. & Winguth, A. M. Global distribution of the 230Th flux to ocean sediments constrained by GCM modelling. Deep Sea Res. Part I 46, 1861–1893 (1999).
Google Scholar
Valk, O. et al. Importance of hydrothermal vents in scavenging removal of 230Th in the Nansen Basin. Geophys. Res. Lett. 45, 10539–10548 (2018).
Google Scholar
Chauhan, T., Noormets, R. & Rasmussen, T. L. Glaciomarine sedimentation and bottom current activity on the north-western and northern continental margins of Svalbard during the late Quaternary. Geo-Mar. Lett. 36, 81–99 (2016).
Google Scholar
Brendryen, J., Haflidason, H., Yokoyama, Y., Haaga, K. A. & Hannisdal, B. Eurasian Ice Sheet collapse was a major source of Meltwater Pulse 1A 14,600 years ago. Nat. Geosci. 13, 363–368 (2020).
Google Scholar
Strobl, C. Datierung von Sedimentkernen und Rekonstruktion der Transportwege der Radionuklide 10Be, 230Th und 231Pa in Hohen Nördlichen Breiten. PhD thesis, Ruprecht-Karls-Universität (1998).
Spielhagen, R. F. et al. Arctic Ocean evidence for late Quaternary initiation of northern Eurasian ice sheets. Geology 25, 783–786 (1997).
Google Scholar
Jakobsson, M. et al. Arctic Ocean glacial history. Quat. Sci. Rev. 92, 40–67 (2014).
Unterman, M. B., Crowley, T. J., Hodges, K. I., Kim, S.-J. & Erickson, D. J. Paleometeorology: high-resolution Northern Hemisphere wintertime mid-latitude dynamics during the last glacial maximum. Geophys. Res. Lett. 38, (2011).
Sidorchuk, A. Y., Panin, A., Borisova, O., Elias, S. & Syvistki, J. Channel morphology and river flow in the northern Russian Plain in the Late Glacial and Holocene. Int. J. Earth Sci. 89, 541–549 (2000).
Jakobsson, M. Hypsometry and volume of the Arctic Ocean and its constituent seas. Geochem. Geophys. Geosyst. 3, 1–18 (2002).
Brinkhuis, H. et al. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 441, 606–609 (2006).
Google Scholar
Stärz, M., Jokat, W., Knorr, G. & Lohmann, G. Threshold in North Atlantic–Arctic Ocean circulation controlled by the subsidence of the Greenland–Scotland Ridge. Nat. Commun. 8, 15681 (2017).
Kuijpers, A. & Werner, F. Extremely deep-draft iceberg scouring in the glacial North Atlantic Ocean. Geo-Mar. Lett. 27, 383–389 (2007).
Google Scholar
Schmidt, M. W., Spero, H. J. & Lea, D. W. Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation. Nature 428, 160–163 (2004).
Google Scholar
Tarasov, L. & Peltier, W. R. Arctic freshwater forcing of the Younger Dryas cold reversal. Nature 435, 662–665 (2005).
Google Scholar
Williams, D. F., Moore, W. S. & Fillon, R. H. Role of glacial Arctic Ocean ice sheets in Pleistocene oxygen isotope and sea level records. Earth Planet. Sci. Lett. 56, 157–166 (1981).
Google Scholar
Hibbert, F. D. et al. Coral indicators of past sea-level change: a global repository of U-series dated benchmarks. Quat. Sci. Rev. 145, 1–56 (2016).
Google Scholar
Rohling, E. J. et al. Differences between the last two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions. Quat. Sci. Rev. 176, 1–28 (2017).
Google Scholar
Hoffmann, S. S., McManus, J. F., Curry, W. B. & Brown-Leger, L. S. Persistent export of 231Pa from the deep central Arctic Ocean over the past 35,000 years. Nature 497, 603–606 (2013).
Google Scholar
Frank, M. & Eisenhauer, A. Radionuclides analysed on sediment core PS1533-3 from the Arctic Ocean. PANGAEA https://doi.org/10.1594/PANGAEA.50830 (1996).
Eisenhauer, A. et al. 10Be records of sediment cores from high northern latitudes: implications for environmental and climatic changes. Earth Planet. Sci. Lett. 124, 171–184 (1994).
Google Scholar
Geibert, W., Stimac, I., Rutgers van der Loeff, M. M. & Kuhn, G. Dating deep-sea sediments with 230Th excess using a constant rate of supply model. Paleoceanogr. Paleoclimatol. 34, 1895–1912 (2019).
Google Scholar
Matthiessen, J. Linescanner images of sediment core PS72/396-5. PANGAEA https://doi.org/10.1594/PANGAEA.817507 (2013).
Matthiessen, J. Linescanner images of sediment core PS72/396-3. PANGAEA https://doi.org/10.1594/PANGAEA.817506 (2013).
Missiaen, L. et al. Downcore variations of sedimentary detrital (238U/232Th) ratio: implications on the use of 230Thxs and 231Paxs to reconstruct sediment flux and ocean circulation. Geochem. Geophys. Geosyst. 19, 2560–2573 (2018).
Google Scholar
Ku, T. L. An evaluation of the U234/U238 method as a tool for dating pelagic sediments. J. Geophys. Res. 70, 3457–3474 (1965).
Google Scholar
Nowaczyk, N. R., Frederichs, T. W., Eisenhauer, A. & Gard, G. Magnetostratigraphic data from late Quaternary sediments from the Yermak Plateau, Arctic Ocean: evidence for four geomagnetic polarity events within the last 170 Ka of the Brunhes Chron. Geophys. J. Int. 117, 453–471 (1994).
Google Scholar
Wiers, S., Snowball, I., O’Regan, M. & Almqvist, B. Late Pleistocene chronology of sediments from the Yermak Plateau and uncertainty in dating based on geomagnetic excursions. Geochem. Geophys. Geosyst. 20, 3289–3310 (2019).
Google Scholar
Kremer, A. et al. Changes in sea ice cover and ice sheet extent at the Yermak Plateau during the last 160 ka – reconstructions from biomarker records. Quat. Sci. Rev. 182, 93–108 (2018).
Google Scholar
Sanchez Goñi, M. F. & Harrison, S. P. Millennial-scale climate variability and vegetation changes during the Last Glacial: concepts and terminology. Quat. Sci. Rev. 29, 2823–2827 (2010).
Google Scholar
Nørgaard‐Pedersen, N., Spielhagen, R. F., Thiede, J. & Kassens, H. Central Arctic surface ocean environment during the past 80,000 years. Paleoceanography 13, 193–204 (1998).
Google Scholar
Adler, R. E. et al. Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge. Global Planet. Change 68, 18–29 (2009).
Google Scholar
Stein, R. et al. Towards a better (litho-)stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung 79, 97–121 (2010).
Stein, R., Matthiessen, J. & Niessen, F. Re-coring at Ice Island T3 site of key core FL-224 (Nautilus Basin, Amerasian Arctic): sediment characteristics and stratigraphic framework. Polarforschung 79, 81–96 (2010).
Poore, R., Osterman, L., Curry, W. & Phillips, R. Late Pleistocene and Holocene meltwater events in the western Arctic Ocean. Geology 27, 759–762 (1999).
Google Scholar
Polyak, L. et al. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. Global Planet. Change 68, 5–17 (2009).
Google Scholar
Raffi, I. et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev. 25, 3113–3137 (2006).
Google Scholar
Jakobsson, M., Backman, J., Murray, A. & Løvlie, R. Optically stimulated luminescence dating supports central Arctic Ocean cm-scale sedimentation rates. Geochem. Geophys. Geosyst. 4, (2003).
Backman, J., Fornaciari, E. & Rio, D. Biochronology and paleoceanography of late Pleistocene and Holocene calcareous nannofossil abundances across the Arctic Basin. Mar. Micropaleontol. 72, 86–98 (2009).
Google Scholar
Gard, G. & Backman, J. in Geological History of the Polar Oceans: Arctic versus Antarctic (eds Bleil, U. & Thiede, J.) 417–436 (Springer, 1990).
Fütterer, D. K. (ed.) ARCTIC ’91: the expedition ARK-Vllll3 of RV “Polarstern” in 1991. Berichte Polarforsch. 107, 1–267 (1992); https://doi.org/10.2312/BzP_0107_1992
Jokat, W. (ed.) ARCTIC ’98: the expedition ARKTIS-XVl2 of “Polarstern” in 1999. Berichte Polarforsch. 308,1–159 (1999); https://doi.org/10.2312/BzP_0308_1999
Jokat, W. (ed.) The expedition of the research vessel “Polarstern” to the Arctic in 2008 (ARK-XXIII/3). Berichte Polar- Meeresforsch. 597, 1–266 (2009); https://doi.org/10.2312/BzPM_0597_2009
Stein, R. The expedition PS87 of the research vessel POLARSTERN to the Arctic Ocean in 2014. Berichte Polar- Meeresforsch. 688, 1–273 (2015); https://doi.org/10.2312/BzPM_0688_2015
Polyak, L., Curry, W. B., Darby, D. A., Bischof, J. & Cronin, T. M. Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 73–93 (2004).
März, C. et al. Manganese-rich brown layers in Arctic Ocean sediments: composition, formation mechanisms, and diagenetic overprint. Geochim. Cosmochim. Acta 75, 7668–7687 (2011).
Google Scholar
Feyling-Hanssen, R. W. Foraminiferal Stratigraphy in the Plio–Pleistocene Kap København Formation, North Greenland Vo. 24 (Museum Tusculanum Press, 1990).
McNeil, D. et al. Sequence stratigraphy, biotic change, 87Sr/86Sr record, paleoclimatic history, and sedimentation rate change across a regional late Cenozoic unconformity in Arctic Canada. Can. J. Earth Sci. 38, 309–331 (2001).
Google Scholar
Nürnberg, D. et al. Sediments in Arctic sea ice: implications for entrainment, transport and release. Mar. Geol. 119, 185–214 (1994).
Google Scholar
Wollenburg, I. Sedimenttransport durch das arktische Meereis: die rezente lithogene und biogene Materialfracht. Sediment transport by Arctic Sea ice: the recent load of lithogenic and biogenic material. Berichte Polarforsch. 127, 1–159 (1993); https://doi.org/10.2312/BzP_0127_1993
Green, K. E. Ecology of some Arctic foraminifera. Micropaleontology 6, 57–78 (1960).
Wollenburg, J. Benthische Foraminiferenfaunen als Wassermassen-, Produktions- und Eisdriftanzeiger im Arktischen Ozean (benthic foraminiferal assemblages in the Arctic Ocean: indicators for water mass distribution, productivity, and sea ice drift). Berichte Polarforsch. 179, 1–227 (1995); https://doi.org/10.2312/BzP_0179_1995
Wollenburg, J. E., Mackensen, A. & Kuhnt, W. Benthic foraminiferal biodiversity response to a changing Arctic palaeoclimate in the last 24,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 255, 195–222 (2007).
Darby, D. A., Myers, W. B., Jakobsson, M. & Rigor, I. Modern dirty sea ice characteristics and sources: the role of anchor ice. J. Geophys. Res. Oceans 116, C09008 (2011).
Evans, J. R. & Kaminski, M. A. Pliocene and Pleistocene chronostratigraphy and paleoenvironment of the central Arctic Ocean, using deep water agglutinated foraminifera. Micropaleontology 44, 109–130 (1998).
Wollenburg, J. E., Kuhnt, W. & Mackensen, A. Changes in Arctic Ocean paleoproductivity and hydrography during the last 145 kyr: the benthic foraminiferal record. Paleoceanography 16, 65–77 (2001).
Google Scholar
Pham, M. et al. A new Certified Reference Material for radionuclides in Irish sea sediment (IAEA-385). Appl. Radiat. Isot. 66, 1711–1717 (2008).
Google Scholar
Nowaczyk, N. R. & Baumann, M. Combined high-resolution magnetostratigraphy and nannofossil biostratigraphy for late Quaternary Arctic Ocean sediments. Deep Sea Res. Part A 39, S567–S601 (1992).
Google Scholar
Pagels, U. Sedimentologische Untersuchungen und Bestimmung der Karbonatlösung in spätquartären Sedimenten des östlichen arktischen Ozeans. GEOMAR Report No. 10 (GEOMAR Forschungszentrum für marine Geowissenschaften, 1991).