Strange India All Strange Things About India and world


  • 1.

    Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). A critical review on structure–property relationships in cellulose nanomaterials.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Isogai, A. Development of completely dispersed cellulose nanofibers. Proc. Jpn. Acad. Ser. B 94, 161–179 (2018).

    CAS 

    Google Scholar 

  • 3.

    Isogai, A., Saito, T. & Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011). The first paper on TEMPO treatment of nanocellulose.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Chen, C. et al. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 5, 642–666 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Isogai, A. Present situation and future prospects of Nanocellulose R&D in Japan. In 2018 Int. Conf. Nanotechnology for Renewable Materials (18NANO) (TAPPI, 2018).

  • 6.

    Arasto, A., Koljonen, T. & Similä, L. (eds) Growth by Integrating Bioeconomy and Low-Carbon Economy: Scenarios for Finland until 2050 (VTT Technical Research Centre of Finland, 2018); https://cris.vtt.fi/en/publications/growth-by-integrating-bioeconomy-and-low-carbon-economy-scenarios.

  • 7.

    Šturcová, A., Davies, G. R. & Eichhorn, S. J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6, 1055–1061 (2005). An early report on the mechanical properties of crystalline cellulose.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Mark, R. E. Cell Wall Mechanics of Tracheids (Elliots, 1967).

  • 9.

    Dufresne, A. Nanocellulose: From Nature to High Performance Tailored Materials (Walter de Gruyter, 2017).

  • 10.

    Trovatti, E. et al. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Carbohydr. Polym. 181, 256–263 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Park, H. J., Weller, C. L., Vergano, P. J. & Testin, R. F. Permeability and mechanical properties of cellulose-based edible films. J. Food Sci. 58, 1361–1364 (1993).

    CAS 

    Google Scholar 

  • 12.

    Mittal, N. et al. Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12, 6378–6388 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Mittal, N. et al. Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano 11, 5148–5159 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Håkansson, K. M. O. et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5, 4018 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Torres-Rendon, J. G., Schacher, F. H., Ifuku, S. & Walther, A. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison. Biomacromolecules 15, 2709–2717 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y. & Isogai, A. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10, 162–165 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Yang, X., Reid, M. S., Olsén, P. & Berglund, L. A. Eco-friendly cellulose nanofibrils designed by nature: effects from preserving native state. ACS Nano 14, 724–735 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Wu, C.-N., Yang, Q., Takeuchi, M., Saito, T. & Isogai, A. Highly tough and transparent layered composites of nanocellulose and synthetic silicate. Nanoscale 6, 392–399 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Guan, Q.-F. et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci. Adv. 6, eaaz1114 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Benítez, A. J., Torres-Rendon, J., Poutanen, M. & Walther, A. Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. Biomacromolecules 14, 4497–4506 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Sehaqui, H. et al. Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing. ACS Appl. Mater. Interf. 4, 1043–1049 (2012).

    CAS 

    Google Scholar 

  • 22.

    Benítez, A. J. & Walther, A. Counterion size and nature control structural and mechanical response in cellulose nanofibril nanopapers. Biomacromolecules 18, 1642–1653 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Song, J. et al. Processing bulk natural wood into a high-performance structural material. Nature 554, 224–228 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Lundahl, M. J., Klar, V., Wang, L., Ago, M. & Rojas, O. J. Spinning of cellulose nanofibrils into filaments: a review. Ind. Eng. Chem. Res. 56, 8–19 (2017).

    CAS 

    Google Scholar 

  • 25.

    Yang, X. & Berglund, L. A. Water-based approach to high-strength all-cellulose material with optical transparency. ACS Sustain. Chem. Eng. 6, 501–510 (2018). An early report on high-strength all-cellulose films.

    CAS 

    Google Scholar 

  • 26.

    Feng, Y., Zhang, X., Shen, Y., Yoshino, K. & Feng, W. A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr. Polym. 87, 644–649 (2012).

    CAS 

    Google Scholar 

  • 27.

    Zhou, Y. et al. A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. Mater. Today 30, 17–25 (2019).

    CAS 

    Google Scholar 

  • 28.

    Liu, A., Walther, A., Ikkala, O., Belova, L. & Berglund, L. A. Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12, 633–641 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Biswas, S. K., Sano, H., Shams, Md. I. & Yano, H. Three-dimensional-moldable nanofiber-reinforced transparent composites with a hierarchically self-assembled “reverse” nacre-like architecture. ACS Appl. Mater. Interf. 9, 30177–30184 (2017).

    CAS 

    Google Scholar 

  • 30.

    Wang, S. et al. Super-strong, super-stiff macrofibers with aligned, long bacterial cellulose nanofibers. Adv. Mater. 29, 1702498 (2017).

    Google Scholar 

  • 31.

    Lightweight Materials for Cars and Trucks https://www.energy.gov/eere/vehicles/lightweight-materials-cars-and-trucks (Vehicle Technologies Office, Office of Energy Efficiency and Renewable Energy, 2014).

  • 32.

    NCV Cellulose Nano Fiber Vehicle http://www.rish.kyoto-u.ac.jp/ncv/ (Ministry of the Environment, 2019).

  • 33.

    Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    PlasticsEurope https://www.plasticseurope.org/en (accessed October 2019).

  • 35.

    Ritchie, H. & Roser, M. Plastic pollution. In Our World in Data https://ourworldindata.org/plastic-pollution (2018).

  • 36.

    Albertsson, A.-C. & Hakkarainen, M. Designed to degrade. Science 358, 872–873 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Thakur, S. et al. Sustainability of bioplastics: opportunities and challenges. Curr. Opin. Green Sustain. Chem. 13, 68–75 (2018).

    Google Scholar 

  • 38.

    Coughlan, M. P. Mechanisms of cellulose degradation by fungi and bacteria. Anim. Feed Sci. Technol. 32, 77–100 (1991).

    CAS 

    Google Scholar 

  • 39.

    Wang, S., Lu, A. & Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206 (2016).

    CAS 

    Google Scholar 

  • 40.

    Holland, C., Vollrath, F., Ryan, A. J. & Mykhaylyk, O. O. Silk and synthetic polymers: reconciling 100 degrees of separation. Adv. Mater. 24, 105–109 (2012).

    CAS 

    Google Scholar 

  • 41.

    Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T. & Goswami, S. Commercial application of cellulose nano-composites—a review. Biotechnol. Rep. 21, e00316 (2019).

    Google Scholar 

  • 42.

    Cowie, J., Bilek, E. T., Wegner, T. H. & Shatkin, J. A. Market projections of cellulose nanomaterial-enabled products. Part 2: Volume estimates. TAPPI J. 13, 57–69 (2014).

    CAS 

    Google Scholar 

  • 43.

    Babu, R. P., O’Connor, K. & Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2, 8 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Wang, Q. Q. et al. Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19, 2033–2047 (2012).

    CAS 

    Google Scholar 

  • 45.

    Chen, L., Zhu, J. Y., Baez, C., Kitin, P. & Elder, T. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem. 18, 3835–3843 (2016). An original report on the fabrication cellulose nanocrystals and nanofibres using concentrated organic acids.

    CAS 

    Google Scholar 

  • 46.

    Yarbrough, J. M. et al. Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano 11, 3101–3109 (2017).

    CAS 

    Google Scholar 

  • 47.

    Zhou, H., St John, F. & Zhu, J. Y. Xylanase pretreatment of wood fibers for producing cellulose nanofibrils: a comparison of different enzyme preparations. Cellulose 26, 543–555 (2019).

    CAS 

    Google Scholar 

  • 48.

    Hata, Y., Sawada, T., Sakai, T. & Serizawa, T. Enzyme-catalyzed bottom-up synthesis of mechanically and physicochemically stable cellulose hydrogels for spatial immobilization of functional colloidal particles. Biomacromolecules 19, 1269–1275 (2018).

    CAS 

    Google Scholar 

  • 49.

    Koskela, S. et al. Lytic polysaccharide monooxygenase (LPMO) mediated production of ultra-fine cellulose nanofibres from delignified softwood fibres. Green Chem. 21, 5924–5933 (2019).

    CAS 

    Google Scholar 

  • 50.

    Kracher, D. et al. Extracellular electron transfer systems fuel cellulose oxidative degradation. Science 352, 1098–1101 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 51.

    Nogi, M., Iwamoto, S., Nakagaito, A. N. & Yano, H. Optically transparent nanofiber paper. Adv. Mater. 21, 1595–1598 (2009). An early report on cellulose-nanofibre-based transparent paper.

    CAS 

    Google Scholar 

  • 52.

    Fang, Z. et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14, 765–773 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 53.

    Hsieh, M.-C., Koga, H., Suganuma, K. & Nogi, M. Hazy transparent cellulose nanopaper. Sci. Rep. 7, 41590 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Lin, C. et al. Preparation of highly hazy transparent cellulose film from dissolving pulp. Cellulose 26, 4061–4069 (2019).

    CAS 

    Google Scholar 

  • 55.

    Nogi, M. et al. High thermal stability of optical transparency in cellulose nanofiber paper. Appl. Phys. Lett. 102, 181911 (2013).

    ADS 

    Google Scholar 

  • 56.

    Ifuku, S. et al. Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8, 1973–1978 (2007).

    CAS 

    Google Scholar 

  • 57.

    Zhu, H. et al. Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10, 1369–1377 (2016).

    CAS 

    Google Scholar 

  • 58.

    Toivonen, M. S. et al. Anomalous-diffusion-assisted brightness in white cellulose nanofibril membranes. Adv. Mater. 30, 1704050 (2018). A recent report on the mechanism of the tunable optical whiteness of cellulose nanofibre films.

    Google Scholar 

  • 59.

    Liang, H.-L. et al. Roll-to-roll fabrication of touch-responsive cellulose photonic laminates. Nat. Commun. 9, 4632 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Wang, J. et al. Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain. Chem. Eng. 6, 49–70 (2018).

    CAS 

    Google Scholar 

  • 61.

    Liu, Q. et al. Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence. Nano Energy 48, 266–274 (2018). A recent report on thermally insulating and transparent cellulose films.

    CAS 

    Google Scholar 

  • 62.

    Li, T. et al. A radiative cooling structural material. Science 364, 760–763 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Lv, T., Huang, J., Liu, W. & Zhang, R. From sky back to sky: embedded transparent cellulose membrane to improve the thermal performance of solar module by radiative cooling. Case Studies Therm. Eng. 18, 100596 (2020).

    Google Scholar 

  • 64.

    Okahisa, Y., Yoshida, A., Miyaguchi, S. & Yano, H. Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos. Sci. Technol. 69, 1958–1961 (2009).

    CAS 

    Google Scholar 

  • 65.

    Jung, Y. H. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    World Health Organization 2.1 Billion People Lack Safe Drinking Water At Home, More Than Twice As Many Lack Safe Sanitation. https://www.who.int/news/item/12-07-2017-2-1-billion-people-lack-safe-drinking-water-at-home-more-than-twice-as-many-lack-safe-sanitation (WHO, 2017).

  • 67.

    Li, T. et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 18, 608–613 (2019). An original report on highly conductive cellulose nanostructures for thermal energy harvesting.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Karim, Z., Mathew, A. P., Kokol, V., Wei, J. & Grahn, M. High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents. RSC Adv. 6, 20644–20653 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 69.

    Voisin, H., Bergström, L., Liu, P. & Mathew, A. Nanocellulose-based materials for water purification. Nanomaterials 7, 57 (2017).

    Google Scholar 

  • 70.

    Kim, S.-H. et al. Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy Environ. Sci. 11, 321–330 (2018).

    CAS 

    Google Scholar 

  • 71.

    Kim, J.-H. et al. Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy Environ. Sci. 12, 177–186 (2019).

    CAS 

    Google Scholar 

  • 72.

    Li, T. et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5, eaau4238 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Jiang, Q. et al. Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. 28, 9400–9407 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Mohammed, N., Grishkewich, N. & Tam, K. C. Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ. Sci. Nano 5, 623–658 (2018).

    CAS 

    Google Scholar 

  • 75.

    Czaja, W., Krystynowicz, A., Bielecki, S. & Brown, R. M. Microbial cellulose—the natural power to heal wounds. Biomaterials 27, 145–151 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Hickey, R. J. & Pelling, A. E. Cellulose biomaterials for tissue engineering. Front. Bioeng. Biotechnol. 7, 45 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Sun, B. et al. Applications of cellulose-based materials in sustained drug delivery systems. Curr. Med. Chem. 26, 2485–2501 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Yamada, K., Shibata, H., Suzuki, K. & Citterio, D. Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17, 1206–1249 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    An, B. W., Heo, S., Ji, S., Bien, F. & Park, J.-U. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9, 2458 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Zhao, D. et al. A dynamic gel with reversible and tunable topological networks and performances. Matter 2, 390–403 (2020).

    Google Scholar 

  • 81.

    Czaja, W. K., Young, D. J., Kawecki, M. & Brown, R. M. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8, 1–12 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Shoseyov, O. et al. Nanocellulose composite biomaterials in industry and medicine. In Extracellular Sugar-Based Biopolymers Matrices (eds Cohen, E. & Merzendorfer, H.) Vol. 12, 693–784 (Springer, 2019).

  • 83.

    Scherner, M. et al. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J. Surg. Res. 189, 340–347 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Ajdary, R., Tardy, B. L., Mattos, B. D., Bai, L. & Rojas, O. J. Plant nanomaterials and inspiration from nature: water interactions and hierarchically structured hydrogels. Adv. Mater. 2001085 (2020).

  • 85.

    UPM Biomedicals https://www.upm.com/businesses/upm-biomedicals/

  • 86.

    Greca, L. G., Lehtonen, J., Tardy, B. L., Guo, J. & Rojas, O. J. Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route. Mater. Horiz. 5, 408–415 (2018). An original report on the synthesis of three-dimensional nanocellulose structures.

    CAS 

    Google Scholar 

  • 87.

    Ajdary, R. et al. Acetylated nanocellulose for single-component bioinks and cell proliferation on 3D-printed scaffolds. Biomacromolecules 20, 2770–2778 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Huan, S. et al. Two-phase emulgels for direct ink writing of skin-bearing architectures. Adv. Funct. Mater. 29, 1902990 (2019).

    Google Scholar 

  • 89.

    Drachuk, I. et al. Immobilization of recombinant E. coli cells in a bacterial cellulose–silk composite matrix to preserve biological function. ACS Biomater. Sci. Eng. 3, 2278–2292 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Sun, M., Wang, Y., Shi, L. & Klemeš, J. J. Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: a systematic review and meta-analysis. Renew. Sustain. Energy Rev. 92, 823–833 (2018). A critical review summarizing the energy use, carbon emissions and environmental impact of the pulp and paper industry.

    Google Scholar 

  • 91.

    Ma, X. et al. Energy and carbon coupled water footprint analysis for straw pulp paper production. J. Clean. Prod. 233, 23–32 (2019).

    CAS 

    Google Scholar 

  • 92.

    Wang, J., Tavakoli, J. & Tang, Y. Bacterial cellulose production, properties and applications with different culture methods—a review. Carbohydr. Polym. 219, 63–76 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 93.

    Shoda, M. & Sugano, Y. Recent advances in bacterial cellulose production. Biotechnol. Bioprocess Eng. 10, 1 (2005).

    CAS 

    Google Scholar 

  • 94.

    Shi, Z., Zhang, Y., Phillips, G. O. & Yang, G. Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539–545 (2014).

    CAS 

    Google Scholar 

  • 95.

    Lin, D., Liu, Z., Shen, R., Chen, S. & Yang, X. Bacterial cellulose in food industry: current research and future prospects. Int. J. Biol. Macromol. 158, 1007–1019 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    Rol, F. et al. Pilot-scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain. Chem. Eng. 5, 6524–6531 (2017).

    CAS 

    Google Scholar 

  • 97.

    Hu, W. et al. Protonation process to enhance the water resistance of transparent and hazy paper. ACS Sustain. Chem. Eng. 6, 12385–12392 (2018).

    CAS 

    Google Scholar 

  • 98.

    Jiang, B. et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement. Adv. Funct. Mater. 30, 1906307 (2020).

    CAS 

    Google Scholar 

  • 99.

    Hubbe, M. A. Paper’s resistance to wetting—a review of internal sizing chemicals and their effects. BioResources 2, 106–145 (2007).

    Google Scholar 

  • 100.

    Isogai, A., Hänninen, T., Fujisawa, S. & Saito, T. Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog. Polym. Sci. 86, 122–148 (2018).

    CAS 

    Google Scholar 

  • 101.

    Rorrer, N. A. et al. Renewable unsaturated polyesters from muconic acid. ACS Sustain. Chem. Eng. 4, 6867–6876 (2016).

    CAS 

    Google Scholar 

  • 102.

    Inglis, A. J., Nebhani, L., Altintas, O., Schmidt, F. G. & Barner-Kowollik, C. Rapid bonding/debonding on demand: reversibly cross-linked functional polymers via Diels−Alder chemistry. Macromolecules 43, 5515–5520 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 103.

    Ghanadpour, M., Carosio, F., Larsson, P. T. & Wågberg, L. Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromolecules 16, 3399–3410 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 104.

    Qin, S. et al. Super gas barrier and fire resistance of nanoplatelet/nanofibril multilayer thin films. Adv. Mater. Interfaces 6, 1801424 (2019).

    Google Scholar 

  • 105.

    Mohamed, A. L. & Hassabo, A. G. Flame retardant of cellulosic materials and their composites. In Flame Retardants: Polymer Blends, Composites and Nanocomposites (eds Visakh, P. M. & Arao, Y.) 247–314 (Springer, 2015).

  • 106.

    Carosio, F., Kochumalayil, J., Fina, A. & Berglund, L. A. Extreme thermal shielding effects in nanopaper based on multilayers of aligned clay nanoplatelets in cellulose nanofiber matrix. Adv. Mater. Interf. 3, 1600551 (2016).

    Google Scholar 

  • 107.

    Carosio, F., Kochumalayil, J., Cuttica, F., Camino, G. & Berglund, L. Oriented clay nanopaper from biobased components—mechanisms for superior fire protection properties. ACS Appl. Mater. Interf. 7, 5847–5856 (2015).

    CAS 

    Google Scholar 

  • 108.

    Gan, W. et al. Dense, self-formed char layer enables a fire-retardant wood structural material. Adv. Funct. Mater. 29, 1807444 (2019).

    Google Scholar 

  • 109.

    Thoorens, G., Krier, F., Leclercq, B., Carlin, B. & Evrard, B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—a review. Int. J. Pharm. 473, 64–72 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 110.

    Bai, L. et al. Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals. 2. In vitro lipid digestion. Food Hydrocoll. 96, 709–716 (2019).

    CAS 

    Google Scholar 

  • 111.

    Lin, K. W. & Lin, H. Y. Quality characteristics of Chinese-style meatball containing bacterial cellulose (nata). J. Food Sci. 69, SNQ107–SNQ111 (2004).

    CAS 

    Google Scholar 

  • 112.

    Ong, K. J., Shatkin, J. A., Nelson, K., Ede, J. D. & Retsina, T. Establishing the safety of novel bio-based cellulose nanomaterials for commercialization. NanoImpact 6, 19–29 (2017). A recent report on the development of a safety testing plan for lignin-coated cellulose nanofibre and nanocrystals.

    Google Scholar 

  • 113.

    Zhou, B., Fu, M., Xie, J., Yang, X. & Li, Z. Ecological functions of bamboo forest: research and application. J. For. Res. 16, 143–147 (2005).

    Google Scholar 

  • 114.

    Yu, Y., Wang, H., Lu, F., Tian, G. & Lin, J. Bamboo fibers for composite applications: a mechanical and morphological investigation. J. Mater. Sci. 49, 2559–2566 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 115.

    Klein, B. C., Sampaio, I. L. de M., Mantelatto, P. E., Filho, R. M. & Bonomi, A. Beyond ethanol, sugar, and electricity: a critical review of product diversification in Brazilian sugarcane mills. Biofuels Bioprod. Biorefin. 13, 809–821 (2019).

    CAS 

    Google Scholar 

  • 116.

    Imani, M. et al. Coupling nanofibril lateral size and residual lignin to tailor the properties of lignocellulose films. Adv. Mater. Interf. 6, 1900770 (2019).

    CAS 

    Google Scholar 

  • 117.

    Stone, J. E. & Scallan, A. M. Effect of component removal upon the porous structure of the cell wall of wood. J. Polym. Sci. C 11, 13–25 (1965).

    Google Scholar 

  • 118.

    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 119.

    Henn, A. R. & Fraundorf, P. B. A quantitative measure of the degree of fibrillation of short reinforcing fibres. J. Mater. Sci. 25, 3659–3663 (1990).

    ADS 
    CAS 

    Google Scholar 

  • 120.

    Zhu, H. et al. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116, 9305–9374 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 121.

    Wang, Q. Q. et al. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19, 1631–1643 (2012).

    CAS 

    Google Scholar 

  • 122.

    Zhu, H. et al. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc. Natl Acad. Sci. USA 112, 8971–8976 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 123.

    Redefining bioeconomy. FinnCERES https://www.finnceres.fi/.

  • 124.

    La Notte, L. et al. Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode. Mater. Today Energy 7, 105–112 (2018).

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *