Strange India All Strange Things About India and world


  • 1.

    Carlson, R. Design and Optimization in Organic Synthesis (Elsevier, 1992).

  • 2.

    Luo, G. A review of automatic selection methods for machine learning algorithms and hyper-parameter values. Netw. Model. Anal. Health Inform. Bioinform. 5, 18 (2016).

    ADS 

    Google Scholar 

  • 3.

    Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems Vol. 25 (eds Pereira, F. et al.) 2951–2959 (Curran Associates Inc., 2012).

  • 4.

    Häse, F., Roch, L. M., Kreisbeck, C. & Aspuru-Guzik, A. Phoenics: a Bayesian Optimizer for Chemistry. ACS Cent. Sci. 4, 1134–1145 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Griffiths, R.-R. & Hernández-Lobato, J. M. Constrained Bayesian optimization for automatic chemical design using variational autoencoders. Chem. Sci. 11, 577–586 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Schweidtmann, A. M. et al. Machine learning meets continuous flow chemistry: automated optimization towards the Pareto front of multiple objectives. Chem. Eng. J. 352, 277–282 (2018).

    CAS 

    Google Scholar 

  • 7.

    Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Häse, F., Roch, L. M. & Aspuru-Guzik, A. Gryffin: an algorithm for Bayesian optimization for categorical variables informed by physical intuition with applications to chemistry. Preprint at https://arxiv.org/abs/2003.12127 (2020).

  • 9.

    Negoescu, D. M., Frazier, P. I. & Powell, W. B. The knowledge-gradient algorithm for sequencing experiments in drug discovery. INFORMS J. Comput. 23, 346–363 (2011).

    MathSciNet 
    MATH 

    Google Scholar 

  • 10.

    Santanilla, A. B. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2014).

    Google Scholar 

  • 11.

    Clayton, A. D. et al. Algorithms for the self-optimisation of chemical reactions. React. Chem. Eng. 4, 1545–1554 (2019).

    CAS 

    Google Scholar 

  • 12.

    Häse, F., Roch, L. M. & Aspuru-Guzik, A. Next-generation experimentation with self-driving laboratories. Trends Chem. 1, 282–291 (2019).

    Google Scholar 

  • 13.

    Weissman, S. A. & Anderson, N. G. Design of experiments (DoE) and process optimization. A review of recent publications. Org. Process Res. Dev. 19, 1605–1633 (2015).

    CAS 

    Google Scholar 

  • 14.

    Lee, R. Statistical design of experiments for screening and optimization. Chem. Ing. Tech. 91, 191–200 (2019).

    CAS 

    Google Scholar 

  • 15.

    Murray, P. M. et al. The application of design of experiments (DoE) reaction optimisation and solvent selection in the development of new synthetic chemistry. Org. Biomol. Chem. 14, 2373–2384 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Hsieh, H.-W., Coley, C. W., Baumgartner, L. M., Jensen, K. F. & Robinson, R. I. Photoredox iridium–nickel dual-catalyzed decarboxylative arylation cross-coupling: from batch to continuous flow via self-optimizing segmented flow reactor. Org. Process Res. Dev. 22, 542–550 (2018).

    CAS 

    Google Scholar 

  • 17.

    Mateos, C., Nieves-Remacha, M. J. & Rincón, J. A. Automated platforms for reaction self-optimization in flow. React. Chem. Eng. 4, 1536–1544 (2019).

    CAS 

    Google Scholar 

  • 18.

    Feurer, M. & Hutter, F. in Automated Machine Learning: Methods, Systems, Challenges (eds Hutter, F. et al.) 3–33 (Springer, 2019).

  • 19.

    Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & de Freitas, N. Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).

    Google Scholar 

  • 20.

    Maceiczyk, R. M. & deMello, A. J. Fast and reliable metamodeling of complex reaction spaces using Universal Kriging. J. Phys. Chem. C 118, 20026–20033 (2014).

    CAS 

    Google Scholar 

  • 21.

    Rogers, A. & Ierapetritou, M. Feasibility and flexibility analysis of black-box processes part 1: surrogate-based feasibility analysis. Chem. Eng. Sci. 137, 986–1004 (2015).

    CAS 

    Google Scholar 

  • 22.

    Boukouvala, F. & Ierapetritou, M. G. Feasibility analysis of black-box processes using an adaptive sampling Kriging-based method. Comput. Chem. Eng. 36, 358–368 (2012).

    CAS 

    Google Scholar 

  • 23.

    Olofsson, S., Hebing, L., Niedenführ, S., Deisenroth, M. P. & Misener, R. GPdoemd: a Python package for design of experiments for model discrimination. Comput. Chem. Eng. 125, 54–70 (2019).

    CAS 

    Google Scholar 

  • 24.

    Krivák, R., Hoksza, D. & Škoda, P. Improving quality of ligand-binding site prediction with Bayesian optimization. In 2017 IEEE International Conference on Bioinformatics and Biomedicine 2278–2279 (2017).

  • 25.

    Reker, D., Hoyt, E. A., Bernardes, G. J. L. & Rodrigues, T. Adaptive optimization of chemical reactions with minimal experimental information. Cell Rep. Phys. Sci. 1, 100247 (2020).

    Google Scholar 

  • 26.

    Zhou, Z., Li, X. & Zare, R. N. Optimizing chemical reactions with deep reinforcement learning. ACS Cent. Sci. 3, 1337–1344 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Kondo, M. et al. Exploration of flow reaction conditions using machine-learning for enantioselective organocatalyzed Rauhut–Currier and [3+2] annulation sequence. Chem. Commun. 56, 1259–1262 (2020); correction 56, 12256–12256 (2020).

    CAS 

    Google Scholar 

  • 28.

    Ueno, T., Rhone, T. D., Hou, Z., Mizoguchi, T. & Tsuda, K. COMBO: an efficient Bayesian optimization library for materials science. Mater. Discov. 4, 18–21 (2016).

    Google Scholar 

  • 29.

    Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D. & Wilson, A. G. GPyTorch: blackbox matrix–matrix Gaussian process inference with GPU acceleration. In Advances in Neural Information Processing Systems Vol. 31 (eds Bengio, S. et al.) 7576–7586 (Curran Associates Inc., 2018).

  • 30.

    Mockus, J. On the Bayes methods for seeking the extremal point. IFAC Proc. 8, 428–431 (1975).

    MathSciNet 

    Google Scholar 

  • 31.

    Perera, D. et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science 359, 429–434 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 360, 186–190 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Moriwaki, H., Tian, Y.-S., Kawashita, N. & Takagi, T. Mordred: a molecular descriptor calculator. J. Cheminform. 10, 4 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 13, 1063–1095 (2012).

    MathSciNet 
    MATH 

    Google Scholar 

  • 35.

    Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (MIT Press, 2006).

  • 36.

    Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011); https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

    MathSciNet 
    MATH 

    Google Scholar 

  • 37.

    Reker, D. & Schneider, G. Active-learning strategies in computer-assisted drug discovery. Drug Discov. Today 20, 458–465 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Jones, D. R., Schonlau, M. & Welch, W. J. Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998).

    MathSciNet 
    MATH 

    Google Scholar 

  • 39.

    Kandasamy, K., Krishnamurthy, A., Schneider, J. & Poczos, B. Parallelised Bayesian optimisation via Thompson sampling. In International Conference on Artificial Intelligence and Statistics 133–142 (2018).

  • 40.

    Hernández-Lobato, J. M., Requeima, J., Pyzer-Knapp, E. O. & Aspuru-Guzik, A. Parallel and distributed Thompson sampling for large-scale accelerated exploration of chemical space. Preprint at https://arxiv.org/abs/1706.01825 (2017).

  • 41.

    Ginsbourger, D., Le Riche, R. & Carraro, L. in Computational Intelligence in Expensive Optimization Problems (eds Tenne, Y. & Goh, C.-K.) 131–162 (Springer, 2010).

  • 42.

    Wang, J., Clark, S. C., Liu, E. & Frazier, P. I. Parallel Bayesian global optimization of expensive functions. Oper. Res. 68, 1850–1865 (2020).

    Google Scholar 

  • 43.

    Surowiec, I. et al. Generalized subset designs in analytical chemistry. Anal. Chem. 89, 6491–6497 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Davies, H. M. L. & Morton, D. Recent advances in C–H functionalization. J. Org. Chem. 81, 343–350 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C−H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Alberico, D., Scott, M. E. & Lautens, M. Aryl−aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev. 107, 174–238 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Fox, R. J. et al. C–H Arylation in the formation of a complex pyrrolopyridine, the commercial synthesis of the potent JAK2 inhibitor, BMS-911543. J. Org. Chem. 84, 4661–4669 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Ji, Y. et al. Mono-oxidation of bidentate bis-phosphines in catalyst activation: kinetic and mechanistic studies of a Pd/xantphos-catalyzed C–H functionalization. J. Am. Chem. Soc. 137, 13272–13281 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Durand, D. J. & Fey, N. Computational ligand descriptors for catalyst design. Chem. Rev. 119, 6561–6594 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Duros, V. et al. Human versus robots in the discovery and crystallization of gigantic polyoxometalates. Angew. Chem. Int. Ed. 56, 10815–10820 (2017).

    CAS 

    Google Scholar 

  • 52.

    Swamy, K. C. K., Kumar, N. N. B., Balaraman, E. & Kumar, K. V. P. P. Mitsunobu and related reactions: advances and applications. Chem. Rev. 109, 2551–2651 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Mitsunobu, O. & Yamada, M. Preparation of esters of carboxylic and phosphoric acid via quaternary phosphonium salts. Bull. Chem. Soc. Jpn 40, 2380–2382 (1967).

    CAS 

    Google Scholar 

  • 54.

    Fletcher, S. The Mitsunobu reaction in the 21st century. Org. Chem. Front. 2, 739–752 (2015).

    CAS 

    Google Scholar 

  • 55.

    Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 58, 8315–8359 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Hagmann, W. K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 51, 4359–4369 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Hu, W.-L., Hu, X.-G. & Hunter, L. Recent developments in the deoxyfluorination of alcohols and phenols: new reagents, mechanistic insights, and applications. Synthesis 49, 4917–4930 (2017).

    CAS 

    Google Scholar 

  • 58.

    Nielsen, M. K., Ahneman, D. T., Riera, O. & Doyle, A. G. Deoxyfluorination with sulfonyl fluorides: navigating reaction space with machine learning. J. Am. Chem. Soc. 140, 5004–5008 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Nielsen, M. K., Ugaz, C. R., Li, W. & Doyle, A. G. PyFluor: a low-cost, stable, and selective deoxyfluorination reagent. J. Am. Chem. Soc. 137, 9571–9574 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    O’Boyle, N. M. et al. Open Babel: an open chemical toolbox. J. Cheminform. 3, 33 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Frisch, M. J. et al. Gaussian 16 Revision A.03 (Gaussian, Inc., 2016).

  • 62.

    Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2017).

  • 63.

    Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems Vol. 32 (eds Wallach, H. et al.) 8026–8037 (Curran Associates Inc., 2019).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *