Strange India All Strange Things About India and world


  • 1.

    Back, C. et al. The 2020 skyrmionics roadmap. J. Phys. D 53, 363001 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 2.

    Kurumaji, T. et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science 365, 914–918 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 3.

    Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 4.

    Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016); corrigendum 12, 830 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016); erratum 11, 731 (2016).

  • 6.

    Soumyanarayanan, A. et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater. 16, 898–904 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 7.

    Nayak, A. K. et al. Magnetic antiskyrmions above room temperature in tetragonal heusler materials. Nature 548, 561–566 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 8.

    Yu, X. Z. et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature 564, 95–98 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 9.

    Büttner, F., Lemesh, I. & Beach, G. S. D. Theory of isolated magnetic skyrmions: from fundamentals to room temperature applications. Sci. Rep. 8, 4464 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Zhang, X. et al. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. J. Phys. Condens. Matter 32, 143001 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Google Scholar 

  • 12.

    Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    CAS 

    Google Scholar 

  • 13.

    Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016).

    ADS 

    Google Scholar 

  • 14.

    Zhang, X., Zhou, Y. & Ezawa, M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 7, 10293 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • 16.

    Shen, L. et al. Current-induced dynamics and chaos of antiferromagnetic bimerons. Phys. Rev. Lett. 124, 037202 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 17.

    Caretta, L. et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13, 1154–1160 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 18.

    Dohi, T., DuttaGupta, S., Fukami, S. & Ohno, H. Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles. Nat. Commun. 10, 5153 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34–42 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 20.

    Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. Math. Gen. 9, 1387–1398 (1976).

    ADS 
    MATH 

    Google Scholar 

  • 21.

    Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985).

    ADS 
    CAS 

    Google Scholar 

  • 22.

    Göbel, B., Mook, A., Henk, J., Mertig, I. & Tretiakov, O. A. Magnetic bimerons as skyrmion analogues in in-plane magnets. Phys. Rev. B 99, 060407 (2019).

    ADS 

    Google Scholar 

  • 23.

    Liang, X. et al. Antiferromagnetic skyrmion-based logic gates controlled by electric currents and fields. Preprint at https://arxiv.org/abs/1909.10709 (2019).

  • 24.

    Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 25.

    Galkina, E. G., Galkin, A. Y., Ivanov, B. A. & Nori, F. Magnetic vortex as a ground state for micron-scale antiferromagnetic samples. Phys. Rev. B 81, 184413 (2010).

    ADS 

    Google Scholar 

  • 26.

    Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Wang, Y. et al. Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science 366, 1125–1128 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 28.

    Chmiel, F. P. et al. Observation of magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure. Nat. Mater. 17, 581–585 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 29.

    Besser, P. J., Morrish, A. H. & Searle, C. W. Magnetocrystalline anisotropy of pure and doped hematite. Phys. Rev. 153, 632–640 (1967).

    ADS 
    CAS 

    Google Scholar 

  • 30.

    Coey, J. M. D. & Sawatzky, G. A. A study of hyperfine interactions in the system (Fe1−xRhx)2O3 using the Mössbauer effect (bonding parameters). J. Phys. C Solid State Phys. 4, 2386 (1971).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Arenholz, E., van der Laan, G., Chopdekar, R. V. & Suzuki, Y. Anisotropic X-ray magnetic linear dichroism at the Fe L2,3 edges in Fe3O4. Phys. Rev. B 74, 094407 (2006).

    ADS 

    Google Scholar 

  • 32.

    Luo, Z. et al. Current-driven magnetic domain-wall logic. Nature 579, 214–218 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 33.

    Shiino, T. et al. Antiferromagnetic domain wall motion driven by spin-orbit torques. Phys. Rev. Lett. 117, 087203 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Kharkov, Y. A., Sushkov, O. A. & Mostovoy, M. Bound states of skyrmions and merons near the Lifshitz point. Phys. Rev. Lett. 119, 207201 (2017).

    CAS 

    Google Scholar 

  • 35.

    Leonov, A. O. & Kézsmárki, I. Asymmetric isolated skyrmions in polar magnets with easy-plane anisotropy. Phys. Rev. B 96, 014423 (2017).

    ADS 

    Google Scholar 

  • 36.

    Bessarab, P. F. et al. Stability and lifetime of antiferromagnetic skyrmions. Phys. Rev. B 99, 140411 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Zhang, P., Finley, J., Safi, T. & Liu, L. Quantitative study on current-induced effect in an antiferromagnet insulator/Pt bilayer film. Phys. Rev. Lett. 123, 247206 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 38.

    Cheng, Y., Yu, S., Zhu, M., Hwang, J. & Yang, F. Electrical switching of tristate antiferromagnetic Néel order in α-Fe2O3 epitaxial films. Phys. Rev. Lett. 124, 027202 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 39.

    Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 429, 850 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 40.

    Khoshlahni, R., Qaiumzadeh, A., Bergman, A. & Brataas, A. Ultrafast generation and dynamics of isolated skyrmions in antiferromagnetic insulators. Phys. Rev. B 99, 054423 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 41.

    Park, S. et al. Strain control of Morin temperature in epitaxial α-Fe2O3 (0001) film. Europhys. Lett. 103, 27007 (2013).

    ADS 

    Google Scholar 

  • 42.

    Kuiper, P., Searle, B. G., Rudolf, P., Tjeng, L. H. & Chen, C. T. X-ray magnetic dichroism of antiferromagnet Fe2O3: the orientation of magnetic moments observed by Fe 2p X-ray absorption spectroscopy. Phys. Rev. Lett. 70, 1549–1552 (1993).

    ADS 
    CAS 

    Google Scholar 

  • 43.

    Lüning, J. et al. Determination of the antiferromagnetic spin axis in epitaxial LaFeO3 films by X-ray magnetic linear dichroism spectroscopy. Phys. Rev. B 67, 214433 (2003).

    ADS 

    Google Scholar 

  • 44.

    Stöhr, J. et al. Images of the antiferromagnetic structure of a NiO(100) surface by means of X-ray magnetic linear dichroism spectromicroscopy. Phys. Rev. Lett. 83, 1862–1865 (1999).

    ADS 

    Google Scholar 

  • 45.

    Stöhr, J., Padmore, H. A., Anders, S., Stammler, T. & Scheinfein, M. R. Principles of X-ray magnetic dichroism spectromicroscopy. Surf. Rev. Lett. 05, 1297–1308 (1998).

    ADS 

    Google Scholar 

  • 46.

    van der Laan, G., Telling, N. D., Potenza, A., Dhesi, S. S. & Arenholz, E. Anisotropic X-ray magnetic linear dichroism and spectromicroscopy of interfacial Co/NiO(001). Phys. Rev. B 83, 064409 (2011).

    ADS 

    Google Scholar 

  • 47.

    Waterfield Price, N. et al. Coherent magnetoelastic domains in multiferroic BiFeO3 films. Phys. Rev. Lett. 117, 177601 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 48.

    Li, X. et al. Bimeron clusters in chiral antiferromagnets. npj Comp. Mater. 6, 169 (2020).

    Google Scholar 

  • 49.

    Radaelli, P., Radaelli, J., Waterfield-Price, N. & Johnson, R. Micromagnetic modelling and imaging of vortex|merons structures in an oxide|metal heterostructure. Phys. Rev. B 101, 144420 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 50.

    Hanneken, C., Kubetzka, A., von Bergmann, K. & Wiesendanger, R. Pinning and movement of individual nanoscale magnetic skyrmions via defects. New J. Phys. 18, 055009 (2016).

    ADS 

    Google Scholar 

  • 51.

    Juge, R. et al. Current-driven skyrmion dynamics and drive-dependent skyrmion Hall effect in an ultrathin film. Phys. Rev. Appl. 12, 044007 (2019).

    CAS 

    Google Scholar 

  • 52.

    Juge, R. et al. Magnetic skyrmions in confined geometries: effect of the magnetic field and the disorder. J. Magn. Magn. Mater. 455, 3–8 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 53.

    Zeissler, K. et al. Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers. Nat. Commun. 11, 428 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *