Strange India All Strange Things About India and worldStrange India All Strange Things About India and world


  • 1.

    van der Hilst, R. D. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature 374, 154–157 (1995).

    Google Scholar 

  • 2.

    Montelli, R. et al. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343 (2004).

    CAS 

    Google Scholar 

  • 3.

    Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    CAS 

    Google Scholar 

  • 4.

    Chang, S. J., Ferreira, A. M., Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. J. Geophys. Res. 120, 4278–4300 (2015).

    Google Scholar 

  • 5.

    Ritsema, J., Deuss, A. A., Van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Google Scholar 

  • 6.

    French, S., Lekic, V. & Romanowicz, B. Waveform tomography reveals channeled flow at the base of the oceanic asthenosphere. Science 342, 227–230 (2013).

    CAS 

    Google Scholar 

  • 7.

    Montelli, R., Nolet, G., Dahlen, F. A. & Masters, G. A catalogue of deep mantle plumes: new results from finite‐frequency tomography. Geochem. Geophys. Geosyst. 7, https://doi.org/10.1029/2006GC001248 (2006).

  • 8.

    Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Google Scholar 

  • 9.

    Rickers, F., Fichtner, A. & Trampert, J. The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion. Earth Planet. Sci. Lett. 367, 39–51 (2013).

    CAS 

    Google Scholar 

  • 10.

    French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. 118, 5920–5938 (2013).

    Google Scholar 

  • 12.

    Li, C., van der Hilst, R. D., Engdahl, E. R. & Burdick, S. A new global model for P wave speed variations in Earth’s mantle. Geochem. Geophys. Geosyst. 9, https://doi.org/10.1029/2007GC001806 (2008).

  • 13.

    Ito, E. & Katsura, T. A temperature profile of the mantle transition zone. Geophys. Res. Lett. 16, 425–428 (1989).

    CAS 

    Google Scholar 

  • 14.

    Lawrence, J. F. & Shearer, P. M. Imaging mantle transition zone thickness with SdS-SS finite-frequency sensitivity kernels. Geophys. J. Int. 174, 143–158 (2008).

    Google Scholar 

  • 15.

    Houser, C., Masters, G., Flanagan, M. & Shearer, P. Determination and analysis of long-wavelength transition zone structure using SS precursors. Geophys. J. Int. 174, 178–194 (2008).

    Google Scholar 

  • 16.

    Phipps Morgan, J. & Morgan, W. J. Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding. Earth Planet. Sci. Lett. 170, 215–239 (1999).

    CAS 

    Google Scholar 

  • 17.

    Jellinek, A. M. & Manga, M. The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature 418, 760–763 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Jellinek, A. M. & Manga, M. Links between long‐lived hot spots, mantle plumes, D″, and plate tectonics. Rev. Geophys. 42, https://doi.org/10.1029/2003RG000144 (2004).

  • 19.

    McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Kellogg, L. H., Hager, B. H. & van der Hilst, R. D. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Ballmer, M. D., Schmerr, N. C., Nakagawa, T. & Ritsema, J. Compositional mantle layering revealed by slab stagnation at ~1000-km depth. Sci. Adv. 1, e1500815 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Marquardt, H. & Miyagi, L. Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nat. Geosci. 8, 311–314 (2015).

    CAS 

    Google Scholar 

  • 23.

    Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nat. Geosci. 10, 236–240 (2017).

    CAS 

    Google Scholar 

  • 24.

    Bercovici, D. & Karato, S. I. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Lawrence, J. F. & Shearer, P. M. A global study of transition zone thickness using receiver functions. J. Geophys. Res. 111, https://doi.org/10.1029/2005JB003973 (2006).

  • 26.

    Shen, Y., Sheehan, A. F., Dueker, K. G., de Groot–Hedlin, C. & Gilbert, H. Mantle discontinuity structure beneath the southern East Pacific Rise from P-to-S converted phases. Science 280, 1232–1235 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Ruan, A. et al. Crustal structure and mantle transition zone thickness beneath a hydrothermal vent at the ultra-slow spreading Southwest Indian Ridge (49° 39′ E): a supplementary study based on passive seismic receiver functions. Mar. Geophys. Res. 38, 39–46 (2017).

    Google Scholar 

  • 28.

    Saki, M., Thomas, C., Nippress, S. E. & Lessing, S. Topography of upper mantle seismic discontinuities beneath the North Atlantic: the Azores, Canary and Cape Verde plumes. Earth Planet. Sci. Lett. 409, 193–202 (2015).

    CAS 

    Google Scholar 

  • 29.

    Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).

    CAS 

    Google Scholar 

  • 30.

    Le Voyer, M., Cottrell, E., Kelley, K. A., Brounce, M. & Hauri, E. H. The effect of primary versus secondary processes on the volatile content of MORB glasses: an example from the equatorial Mid‐Atlantic Ridge (5° N–3° S). J. Geophys. Res. 120, 125–144 (2015).

    Google Scholar 

  • 31.

    Jenkins, J., Cottaar, S., White, R. S. & Deuss, A. Depressed mantle discontinuities beneath Iceland: evidence of a garnet controlled 660 km discontinuity? Earth Planet. Sci. Lett. 433, 159–168 (2016).

    CAS 

    Google Scholar 

  • 32.

    Agius, M. R., Rychert, C. A., Harmon, N. & Laske, G. Mapping the mantle transition zone beneath Hawaii from Ps receiver functions: evidence for a hot plume and cold mantle downwellings. Earth Planet. Sci. Lett. 474, 226–236 (2017).

    CAS 

    Google Scholar 

  • 33.

    Thomson, A. R., Walter, M. J., Kohn, S. C. & Brooker, R. A. Slab melting as a barrier to deep carbon subduction. Nature 529, 76–79 (2016).

    CAS 

    Google Scholar 

  • 34.

    Dalton, C. A., Langmuir, C. H. & Gale, A. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science 344, 80–83 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Richter, F. M. Convection and the large‐scale circulation of the mantle. J. Geophys. Res. 78, 8735–8745 (1973).

    Google Scholar 

  • 36.

    Schilling, J. G., Hanan, B. B., McCully, B., Kingsley, R. H. & Fontignie, D. Influence of the Sierra Leone mantle plume on the equatorial Mid‐Atlantic Ridge: a Nd–Sr–Pb isotopic study. J. Geophys. Res. 99, 12005–12028 (1994).

    Google Scholar 

  • 37.

    Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, https://doi.org/10.1029/2001GC000252 (2003).

  • 38.

    Agius, M. R., Harmon, N., Rychert, C. A., Tharimena, S. & Kendall, J. M. Sediment characterization at the equatorial Mid‐Atlantic Ridge from P‐to‐S teleseismic phase conversions recorded on the PI‐LAB experiment. Geophys. Res. Lett. 45, https://doi.org/10.1029/2018GL080565 (2018).

  • 39.

    Harmon, N. et al. Marine geophysical investigation of the chain fracture zone in the Equatorial Atlantic from the PI‐LAB experiment. J. Geophys. Res. 123, 11030–11016 (2018).

    Google Scholar 

  • 40.

    Crawford, W. C. & Webb, S. C. Identifying and removing tilt noise from low-frequency (<0.1 Hz) seafloor vertical seismic data. Bull. Seismol. Soc. Am. 90, 952–963 (2000).

    Google Scholar 

  • 41.

    Bell, S. W., Forsyth, D. W. & Ruan, Y. Removing noise from the vertical component records of ocean‐bottom seismometers: results from year one of the Cascadia Initiative. Bull. Seismol. Soc. Am. 105, 300–313 (2015).

    Google Scholar 

  • 42.

    Helffrich, G. Extended-time multitaper frequency domain cross-correlation receiver-function estimation. Bull. Seismol. Soc. Am. 96, 344–347 (2006).

    Google Scholar 

  • 43.

    Rychert, C. A., Laske, G., Harmon, N. & Shearer, P. M. Seismic imaging of melt in a displaced Hawaiian plume. Nat. Geosci. 6, 657–660 (2013).

    CAS 

    Google Scholar 

  • 44.

    Efron, B. & Tibshirani, R. Statistical data analysis in the computer age. Science 253, 390–395 (1991).

    CAS 

    Google Scholar 

  • 45.

    Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z. & Dueker, K. G. Dehydration melting at the top of the lower mantle. Science 344, 1265–1268 (2014).

    CAS 

    Google Scholar 

  • 46.

    Harmon, N. et al. Evolution of the oceanic lithosphere in the equatorial Atlantic from Rayleigh wave tomography, evidence for small‐scale convection from the PI‐LAB experiment. Geochem. Geophys. Geosyst. 21, e2020GC009174 (2020).

    Google Scholar 

  • 47.

    Wang, S., Constable, S., Rychert, C. A. & Harmon, N. A lithosphere‐asthenosphere boundary and partial melt estimated using marine magnetotelluric data at the central Middle Atlantic Ridge. Geochem. Geophys. Geosyst. 21, e2020GC009177 (2020).

    Google Scholar 

  • 48.

    Bina, C. R. & Helffrich, G. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J. Geophys. Res. 99, 15853–15860 (1994).

    CAS 

    Google Scholar 

  • 49.

    Ye, Y., Gu, C., Shim, S. H., Meng, Y. & Prakapenka, V. The postspinel boundary in pyrolitic compositions determined in the laser‐heated diamond anvil cell. Geophys. Res. Lett. 41, 3833–3841 (2014).

    CAS 

    Google Scholar 

  • 50.

    Litasov, K. D., Ohtani, E. & Sano, A. Influence of water on major phase transitions in the Earth’s mantle. Geophys. Monogr. Ser. 168, 95–111 (2006).

    CAS 

    Google Scholar 

  • 51.

    Lebedev, S., Chevrot, S. & van der Hilst, R. D. Seismic evidence for olivine phase changes at the 410- and 660-kilometer discontinuities. Science 296, 1300–1302 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Akaogi, M., Ito, E. & Navrotsky, A. Olivine‐modified spinel–spinel transitions in the system Mg2SiO4–Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application. J. Geophys. Res. 94, 15671–15685 (1989).

    Google Scholar 

  • 53.

    Ito, E., Akaogi, M., Topor, L. & Navrotsky, A. Negative pressure–temperature slopes for reactions forming MgSiO3 perovskite from calorimetry. Science 249, 1275–1278 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Houser, C. Global seismic data reveal little water in the mantle transition zone. Earth Planet. Sci. Lett. 448, 94–101 (2016).

    CAS 

    Google Scholar 

  • 55.

    Anderson, D. L., Schramm, K. A., Foulger, G. R., Natland, J. H. & Presnall, D. C. Global hotspot maps. Geol. Soc. Am. Spec. Pap. 388, 19–29 (2005).

    Google Scholar 

  • 56.

    Durand, S., Debayle, E., Ricard, Y., Zaroli, C. & Lambotte, S. Confirmation of a change in the global shear velocity pattern at around 1000 km depth. Geophys. J. Int. 211, 1628–1639 (2017).

    Google Scholar 

  • 57.

    French, S. W. & Romanowicz, B. A. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199, 1303–1327 (2014).

    Google Scholar 

  • 58.

    Tesoniero, A., Auer, L., Boschi, L. & Cammarano, F. Hydration of marginal basins and compositional variations within the continental lithospheric mantle inferred from a new global model of shear and compressional velocity. J. Geophys. Res. 120, 7789–7813 (2015).

    Google Scholar 

  • 59.

    Moulik, P. & Ekström, G. An anisotropic shear velocity model of the Earth’s mantle using normal modes, body waves, surface waves and long-period waveforms. Geophys. J. Int. 199, 1713–1738 (2014).

    Google Scholar 

  • 60.

    Colli, L., Fichtner, A. & Bunge, H. P. Full waveform tomography of the upper mantle in the South Atlantic region: imaging a westward fluxing shallow asthenosphere? Tectonophysics 604, 26–40 (2013).

    Google Scholar 

  • 61.

    Wessel, P. et al. The Generic Mapping Tools version 6. Geochem. Geophys. Geosyst. 20, 5556–5564 (2019).

    Google Scholar 

  • 62.

    Shen, Y., Solomon, S. C., Bjarnason, I. T. & Wolfe, C. J. Seismic evidence for a lower-mantle origin of the Iceland plume. Nature 395, 62 (1998).

    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *