Strange India All Strange Things About India and world


  • 1.

    Manley, G. A. & Sienknecht, U. J. in The Middle Ear: Science, Otosurgery and Technology (eds Puria, S. et al.) 7–30 (Springer, 2013).

  • 2.

    Allin, E. F. & Hopson, J. A. in The Evolutionary Biology of Hearing (eds Webster, D. B. et al.) 587–614 (Springer, 1992).

  • 3.

    Han, G., Mao, F., Bi, S., Wang, Y. & Meng, J. A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones. Nature 551, 451–456 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Luo, Z.-X. et al. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature 548, 326–329 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Wang, H., Meng, J. & Wang, Y. Cretaceous fossil reveals a new pattern in mammalian middle ear evolution. Nature 576, 102–105 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Mao, F. et al. Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal. Science 367, 305–308 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Luo, Z.-X. Transformation and diversification in early mammal evolution. Nature 450, 1011–1019 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Meng, J. Mesozoic mammals of China: implications for phylogeny and early evolution of mammals. Natl Sci. Rev. 1, 521–542 (2014).

    Article 

    Google Scholar 

  • 9.

    Zheng, X., Bi, S., Wang, X. & Meng, J. A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period. Nature 500, 199–202 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Bi, S., Wang, Y., Guan, J., Sheng, X. & Meng, J. Three new Jurassic euharamiyidan species reinforce early divergence of mammals. Nature 514, 579–584 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Meng, Q. J. et al. New gliding mammaliaforms from the Jurassic. Nature 548, 291–296 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Mao, F. Y. & Meng, J. A new haramiyidan mammal from the Jurassic Yanliao Biota and comparisons with other haramiyidans. Zool. J. Linn. Soc. 186, 529–552 (2019).

    Article 

    Google Scholar 

  • 13.

    Luo, Z.-X. Developmental patterns in Mesozoic evolution of mammal ears. Annu. Rev. Ecol. Evol. Syst. 42, 355–380 (2011).

    Article 

    Google Scholar 

  • 14.

    Meng, J., Wang, Y. & Li, C. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472, 181–185 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Harper, T. & Rougier, G. W. Petrosal morphology and cochlear function in Mesozoic stem therians. PLoS ONE 14, e0209457 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Huttenlocker, A. K., Grossnickle, D. M., Kirkland, J. I., Schultz, J. A. & Luo, Z.-X. Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature 558, 108–112 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Meng, J. et al. A comparative study on auditory and hyoid bones of Jurassic euharamiyidans and contrasting evidence for mammalian middle ear evolution. J. Anat. 236, 50–71 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Jenkins, F. A. Jr, Gatesy, S. M., Shubin, N. H. & Amaral, W. W. Haramiyids and Triassic mammalian evolution. Nature 385, 715–718 (1997).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Hahn, G. Neue Zähne von Haramiyiden aus der deutschen Ober-Trias und ihre Beziehungen zu den Multituberculaten. Palaeontographica Abt. A Paläozool. Stratigr. 142, 1–15 (1973).

    Google Scholar 

  • 20.

    Meng, J., Bi, S., Zheng, X. & Wang, X. Ear ossicle morphology of the Jurassic euharamiyidan Arboroharamiya and evolution of mammalian middle ear. J. Morphol. 279, 441–457 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Kermack, K. A., Mussett, F. & Rigney, H. W. The lower jaw of Morganucodon. Zool. J. Linn. Soc. 53, 87–175 (1973).

    Article 

    Google Scholar 

  • 22.

    Mao, F., Liu, C., Chase, M. H., Smith, A. K. & Meng, J. Exploring ancestral phenotypes and evolutionary development of the mammalian middle ear based on Early Cretaceous Jehol mammals. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwaa188 (2020).

  • 23.

    Kermack, K. A., Kermack, D. M., Lees, P. M. & Mills, J. R. E. New multituberculate-like teeth from the Middle Jurassic of England. Acta Palaeontol. Pol. 43, 581–606 (1998).

    Google Scholar 

  • 24.

    Butler, P. M. & Hooker, J. R. New teeth of allotherian mammals from the English Bathonian, including the earliest multituberculates. Acta Palaeontol. Pol. 50, 185–207 (2005).

    Google Scholar 

  • 25.

    Averianov, A. O. et al. Haramiyidan mammals from the Middle Jurassic of western Siberia, Russia. Part 1: Shenshouidae and Maiopatagium. J. Vertebr. Paleontol. 39, e1669159 (2019).

    Article 

    Google Scholar 

  • 26.

    Martin, T., Averianov, A. O. & Pfretzschner, H. U. Mammals from the Late Jurassic Qigu Formation in the southern Junggar Basin, Xinjiang, northwest China. Palaeobio. Palaeoenv. 90, 295–319 (2010).

    Article 

    Google Scholar 

  • 27.

    Averianov, A. O. et al. A new euharamiyidan mammaliaform from the Lower Cretaceous of Yakutia, Russia. J. Vertebr. Paleontol. 39, e1762089 (2020).

    Article 

    Google Scholar 

  • 28.

    Krause, D. W. et al. Skeleton of a Cretaceous mammal from Madagascar reflects long-term insularity. Nature 581, 421–427 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Cifelli, R. L. & Davis, B. M. Jurassic fossils and mammalian antiquity. Nature 500, 160–161 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Bensley, B. A. On the identification of Meckelian and mylohyoid grooves in the jaws of Mesozoic and recent Mammalia. Univ. Tor. Stud. Biol. Ser. 3, 75–81 (1902).

    Google Scholar 

  • 31.

    Simpson, G. G. Mesozoic Mammalia. XII. The internal mandibular groove in Jurassic mammals. Am. J. Sci. 14, 461–470 (1928).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Burford, C. M. & Mason, M. J. Early development of the malleus and incus in humans. J. Anat. 229, 857–870 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Wible, J. R. & Spaulding, M. On the cranial osteology of the African palm civet, Nandina binotata (Gray, 1830) (Mammalia, Carnivora, Feliformia). Ann. Carnegie Mus. 82, 1–114 (2013).

    Article 

    Google Scholar 

  • 34.

    Fleischer, G. Studien am Skelett des Gehörorgans der Säugetiere, einschließlich des Menschen. Saugetierkdl. Mitt. 21, 131–239 (1973).

    Google Scholar 

  • 35.

    Zeller, U. in Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials (eds Szalay, F. S. et al.) 95–107 (Springer, 1993).

  • 36.

    Doran, A. H. G. Morphology of the mammalian ossicula auditûs. Trans. Linnean Soc. Lond. 2nd Ser. Zool. 1, 371–497 (1878).

    Article 

    Google Scholar 

  • 37.

    Luo, Z.-X., Chen, P., Li, G. & Chen, M. A new eutriconodont mammal and evolutionary development in early mammals. Nature 446, 288–293 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    McClain, J. A. The development of the auditory ossicles of the opossum (Didelphys virgininia). J. Morphol. 64, 211–265 (1939).

    Article 

    Google Scholar 

  • 39.

    Sánchez-Villagra, M. R., Gemballa, S., Nummela, S., Smith, K. K. & Maier, W. Ontogenetic and phylogenetic transformations of the ear ossicles in marsupial mammals. J. Morphol. 251, 219–238 (2002).

    PubMed 
    Article 

    Google Scholar 

  • 40.

    Anson, B. J., Hanson, J. S. & Richany, S. F. Early embryology of the auditory ossicles and associated structures in relation to certain anomalies observed clinically. Ann. Otol. Rhinol. Laryngol. 69, 427–447 (1960).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Whyte, J. R. et al. Fetal development of the human tympanic ossicular chain articulations. Cells Tissues Organs 171, 241–249 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Rodríguez-Vázquez, J. F., Yamamoto, M., Abe, S., Katori, Y. & Murakami, G. Development of the human incus with special reference to the detachment from the chondrocranium to be transferred into the middle ear. Anat. Rec. (Hoboken) 301, 1405–1415 (2018).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Anthwal, N., Fenelon, J. C., Johnston, S. D., Renfree, M. B. & Tucker, A. S. Transient role of the middle ear as a lower jaw support across mammals. eLife 9, e57860 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Luo, Z.-X., Gatesy, S. M., Jenkins, F. A., Jr, Amaral, W. W. & Shubin, N. H. Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. Proc. Natl Acad. Sci. USA 112, E7101–E7109 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Luo, Z. & Crompton, A. W. Transformation of the quadrate (incus) through the transition from non-mammalian cynodonts to mammals. J. Vertebr. Paleontol. 14, 341–374 (1994).

    Article 

    Google Scholar 

  • 46.

    Rougier, G. W., Wible, J. R. & Novacek, M. J. Middle-ear ossicles of the multituberculate Kryptobaatar from the Mongolian Late Cretaceous: implications for the mammaliamorph relationships and the evolution of the auditory apparatus. Am. Mus. Novit. 3187, 1–43 (1996).

    Google Scholar 

  • 47.

    Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).

    Article 

    Google Scholar 

  • 48.

    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) 1–8, https://doi.org/10.1109/GCE.2010.5676129 (IEEE, 2010).

  • 50.

    Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–314 (1994).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Wagner, P. J. Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates. Biol. Lett. 8, 143–146 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Harrison, L. B. & Larsson, H. C. E. Among-character rate variation distributions in phylogenetic analysis of discrete morphological characters. Syst. Biol. 64, 307–324 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Stadler, T. Sampling-through-time in birth–death trees. J. Theor. Biol. 267, 396–404 (2010).

    ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Gavryushkina, A., Welch, D., Stadler, T. & Drummond, A. J. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLOS Comput. Biol. 10, e1003919 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65, 228–249 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. The ICS international chronostratigraphic chart. Episodes 36, 199–204 (2013).

    Article 

    Google Scholar 

  • 59.

    Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mamm. 99, 1–14 (2018).

    Article 

    Google Scholar 

  • 60.

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2004).

    Google Scholar 

  • 62.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  • 63.

    Gunnell, G. F. et al. Fossil lemurs from Egypt and Kenya suggest an African origin for Madagascar’s aye-aye. Nat. Commun. 9, 3193 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Hahn, G., Sigogneau-Russell, D. & Wouters, G. New data on Theroteinidae: their relations with Paulchoffatiidae and Haramiyidae. Geol. Paleontol. 23, 205–215 (1989).

    Google Scholar 

  • 67.

    King, B. & Beck, R. M. D. Tip dating supports novel resolutions of controversial relationships among early mammals. Proc. R. Soc. Lond. B 287, 20200943 (2020).

    Google Scholar 

  • 68.

    Gates, G. R., Saunders, J. C., Bock, G. R., Aitkin, L. M. & Elliott, M. A. Peripheral auditory function in the platypus, Ornithorhynchus anatinus. J. Acoust. Soc. Am. 56, 152–156 (1974).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Sansom, R. S., Choate, P. G., Keating, J. N. & Randle, E. Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees. Biol. Lett. 14, 20180263 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Hagenbach, E. Ueber ein besonderes, mit dem Hammer der Säugethiere in Verbindung stehendes Knöchelchen. Arch. Anat. Physiol. Wissensch. Medizin 1841, 46–54 (1841).

    Google Scholar 

  • 71.

    Maier, W. & Ruf, I. The anterior process of the malleus in Cetartiodactyla. J. Anat. 228, 313–323 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 72.

    Broom, R. On the structure of the skull in Chrysochloris. Proc. Zool. Soc. Lond. 86, 449–458 (1916).

    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *