Manley, G. A. & Sienknecht, U. J. in The Middle Ear: Science, Otosurgery and Technology (eds Puria, S. et al.) 7–30 (Springer, 2013).
Allin, E. F. & Hopson, J. A. in The Evolutionary Biology of Hearing (eds Webster, D. B. et al.) 587–614 (Springer, 1992).
Han, G., Mao, F., Bi, S., Wang, Y. & Meng, J. A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones. Nature 551, 451–456 (2017).
Google Scholar
Luo, Z.-X. et al. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature 548, 326–329 (2017).
Google Scholar
Wang, H., Meng, J. & Wang, Y. Cretaceous fossil reveals a new pattern in mammalian middle ear evolution. Nature 576, 102–105 (2019).
Google Scholar
Mao, F. et al. Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal. Science 367, 305–308 (2020).
Google Scholar
Luo, Z.-X. Transformation and diversification in early mammal evolution. Nature 450, 1011–1019 (2007).
Google Scholar
Meng, J. Mesozoic mammals of China: implications for phylogeny and early evolution of mammals. Natl Sci. Rev. 1, 521–542 (2014).
Google Scholar
Zheng, X., Bi, S., Wang, X. & Meng, J. A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period. Nature 500, 199–202 (2013).
Google Scholar
Bi, S., Wang, Y., Guan, J., Sheng, X. & Meng, J. Three new Jurassic euharamiyidan species reinforce early divergence of mammals. Nature 514, 579–584 (2014).
Google Scholar
Meng, Q. J. et al. New gliding mammaliaforms from the Jurassic. Nature 548, 291–296 (2017).
Google Scholar
Mao, F. Y. & Meng, J. A new haramiyidan mammal from the Jurassic Yanliao Biota and comparisons with other haramiyidans. Zool. J. Linn. Soc. 186, 529–552 (2019).
Google Scholar
Luo, Z.-X. Developmental patterns in Mesozoic evolution of mammal ears. Annu. Rev. Ecol. Evol. Syst. 42, 355–380 (2011).
Google Scholar
Meng, J., Wang, Y. & Li, C. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472, 181–185 (2011).
Google Scholar
Harper, T. & Rougier, G. W. Petrosal morphology and cochlear function in Mesozoic stem therians. PLoS ONE 14, e0209457 (2019).
Google Scholar
Huttenlocker, A. K., Grossnickle, D. M., Kirkland, J. I., Schultz, J. A. & Luo, Z.-X. Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature 558, 108–112 (2018).
Google Scholar
Meng, J. et al. A comparative study on auditory and hyoid bones of Jurassic euharamiyidans and contrasting evidence for mammalian middle ear evolution. J. Anat. 236, 50–71 (2020).
Google Scholar
Jenkins, F. A. Jr, Gatesy, S. M., Shubin, N. H. & Amaral, W. W. Haramiyids and Triassic mammalian evolution. Nature 385, 715–718 (1997).
Google Scholar
Hahn, G. Neue Zähne von Haramiyiden aus der deutschen Ober-Trias und ihre Beziehungen zu den Multituberculaten. Palaeontographica Abt. A Paläozool. Stratigr. 142, 1–15 (1973).
Meng, J., Bi, S., Zheng, X. & Wang, X. Ear ossicle morphology of the Jurassic euharamiyidan Arboroharamiya and evolution of mammalian middle ear. J. Morphol. 279, 441–457 (2018).
Google Scholar
Kermack, K. A., Mussett, F. & Rigney, H. W. The lower jaw of Morganucodon. Zool. J. Linn. Soc. 53, 87–175 (1973).
Google Scholar
Mao, F., Liu, C., Chase, M. H., Smith, A. K. & Meng, J. Exploring ancestral phenotypes and evolutionary development of the mammalian middle ear based on Early Cretaceous Jehol mammals. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwaa188 (2020).
Kermack, K. A., Kermack, D. M., Lees, P. M. & Mills, J. R. E. New multituberculate-like teeth from the Middle Jurassic of England. Acta Palaeontol. Pol. 43, 581–606 (1998).
Butler, P. M. & Hooker, J. R. New teeth of allotherian mammals from the English Bathonian, including the earliest multituberculates. Acta Palaeontol. Pol. 50, 185–207 (2005).
Averianov, A. O. et al. Haramiyidan mammals from the Middle Jurassic of western Siberia, Russia. Part 1: Shenshouidae and Maiopatagium. J. Vertebr. Paleontol. 39, e1669159 (2019).
Google Scholar
Martin, T., Averianov, A. O. & Pfretzschner, H. U. Mammals from the Late Jurassic Qigu Formation in the southern Junggar Basin, Xinjiang, northwest China. Palaeobio. Palaeoenv. 90, 295–319 (2010).
Google Scholar
Averianov, A. O. et al. A new euharamiyidan mammaliaform from the Lower Cretaceous of Yakutia, Russia. J. Vertebr. Paleontol. 39, e1762089 (2020).
Google Scholar
Krause, D. W. et al. Skeleton of a Cretaceous mammal from Madagascar reflects long-term insularity. Nature 581, 421–427 (2020).
Google Scholar
Cifelli, R. L. & Davis, B. M. Jurassic fossils and mammalian antiquity. Nature 500, 160–161 (2013).
Google Scholar
Bensley, B. A. On the identification of Meckelian and mylohyoid grooves in the jaws of Mesozoic and recent Mammalia. Univ. Tor. Stud. Biol. Ser. 3, 75–81 (1902).
Simpson, G. G. Mesozoic Mammalia. XII. The internal mandibular groove in Jurassic mammals. Am. J. Sci. 14, 461–470 (1928).
Google Scholar
Burford, C. M. & Mason, M. J. Early development of the malleus and incus in humans. J. Anat. 229, 857–870 (2016).
Google Scholar
Wible, J. R. & Spaulding, M. On the cranial osteology of the African palm civet, Nandina binotata (Gray, 1830) (Mammalia, Carnivora, Feliformia). Ann. Carnegie Mus. 82, 1–114 (2013).
Google Scholar
Fleischer, G. Studien am Skelett des Gehörorgans der Säugetiere, einschließlich des Menschen. Saugetierkdl. Mitt. 21, 131–239 (1973).
Zeller, U. in Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials (eds Szalay, F. S. et al.) 95–107 (Springer, 1993).
Doran, A. H. G. Morphology of the mammalian ossicula auditûs. Trans. Linnean Soc. Lond. 2nd Ser. Zool. 1, 371–497 (1878).
Google Scholar
Luo, Z.-X., Chen, P., Li, G. & Chen, M. A new eutriconodont mammal and evolutionary development in early mammals. Nature 446, 288–293 (2007).
Google Scholar
McClain, J. A. The development of the auditory ossicles of the opossum (Didelphys virgininia). J. Morphol. 64, 211–265 (1939).
Google Scholar
Sánchez-Villagra, M. R., Gemballa, S., Nummela, S., Smith, K. K. & Maier, W. Ontogenetic and phylogenetic transformations of the ear ossicles in marsupial mammals. J. Morphol. 251, 219–238 (2002).
Google Scholar
Anson, B. J., Hanson, J. S. & Richany, S. F. Early embryology of the auditory ossicles and associated structures in relation to certain anomalies observed clinically. Ann. Otol. Rhinol. Laryngol. 69, 427–447 (1960).
Google Scholar
Whyte, J. R. et al. Fetal development of the human tympanic ossicular chain articulations. Cells Tissues Organs 171, 241–249 (2002).
Google Scholar
Rodríguez-Vázquez, J. F., Yamamoto, M., Abe, S., Katori, Y. & Murakami, G. Development of the human incus with special reference to the detachment from the chondrocranium to be transferred into the middle ear. Anat. Rec. (Hoboken) 301, 1405–1415 (2018).
Google Scholar
Anthwal, N., Fenelon, J. C., Johnston, S. D., Renfree, M. B. & Tucker, A. S. Transient role of the middle ear as a lower jaw support across mammals. eLife 9, e57860 (2020).
Google Scholar
Luo, Z.-X., Gatesy, S. M., Jenkins, F. A., Jr, Amaral, W. W. & Shubin, N. H. Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. Proc. Natl Acad. Sci. USA 112, E7101–E7109 (2015).
Google Scholar
Luo, Z. & Crompton, A. W. Transformation of the quadrate (incus) through the transition from non-mammalian cynodonts to mammals. J. Vertebr. Paleontol. 14, 341–374 (1994).
Google Scholar
Rougier, G. W., Wible, J. R. & Novacek, M. J. Middle-ear ossicles of the multituberculate Kryptobaatar from the Mongolian Late Cretaceous: implications for the mammaliamorph relationships and the evolution of the auditory apparatus. Am. Mus. Novit. 3187, 1–43 (1996).
Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).
Google Scholar
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).
Google Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) 1–8, https://doi.org/10.1109/GCE.2010.5676129 (IEEE, 2010).
Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–314 (1994).
Google Scholar
Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).
Google Scholar
Wagner, P. J. Modelling rate distributions using character compatibility: implications for morphological evolution among fossil invertebrates. Biol. Lett. 8, 143–146 (2012).
Google Scholar
Harrison, L. B. & Larsson, H. C. E. Among-character rate variation distributions in phylogenetic analysis of discrete morphological characters. Syst. Biol. 64, 307–324 (2015).
Google Scholar
Stadler, T. Sampling-through-time in birth–death trees. J. Theor. Biol. 267, 396–404 (2010).
Google Scholar
Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).
Google Scholar
Gavryushkina, A., Welch, D., Stadler, T. & Drummond, A. J. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLOS Comput. Biol. 10, e1003919 (2014).
Google Scholar
Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65, 228–249 (2016).
Google Scholar
Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. The ICS international chronostratigraphic chart. Episodes 36, 199–204 (2013).
Google Scholar
Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mamm. 99, 1–14 (2018).
Google Scholar
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
Google Scholar
Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2004).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).
Gunnell, G. F. et al. Fossil lemurs from Egypt and Kenya suggest an African origin for Madagascar’s aye-aye. Nat. Commun. 9, 3193 (2018).
Google Scholar
Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
Google Scholar
Hahn, G., Sigogneau-Russell, D. & Wouters, G. New data on Theroteinidae: their relations with Paulchoffatiidae and Haramiyidae. Geol. Paleontol. 23, 205–215 (1989).
King, B. & Beck, R. M. D. Tip dating supports novel resolutions of controversial relationships among early mammals. Proc. R. Soc. Lond. B 287, 20200943 (2020).
Gates, G. R., Saunders, J. C., Bock, G. R., Aitkin, L. M. & Elliott, M. A. Peripheral auditory function in the platypus, Ornithorhynchus anatinus. J. Acoust. Soc. Am. 56, 152–156 (1974).
Google Scholar
Sansom, R. S., Choate, P. G., Keating, J. N. & Randle, E. Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees. Biol. Lett. 14, 20180263 (2018).
Google Scholar
Hagenbach, E. Ueber ein besonderes, mit dem Hammer der Säugethiere in Verbindung stehendes Knöchelchen. Arch. Anat. Physiol. Wissensch. Medizin 1841, 46–54 (1841).
Maier, W. & Ruf, I. The anterior process of the malleus in Cetartiodactyla. J. Anat. 228, 313–323 (2016).
Google Scholar
Broom, R. On the structure of the skull in Chrysochloris. Proc. Zool. Soc. Lond. 86, 449–458 (1916).
Google Scholar